Skip to main content
Log in

miRNA in situ hybridization in formaldehyde and EDC–fixed tissues

  • Brief Communication
  • Published:

From Nature Methods

View current issue Submit your manuscript

Abstract

MicroRNAs are small regulatory RNAs with many biological functions and disease associations. We showed that in situ hybridization (ISH) using conventional formaldehyde fixation results in substantial microRNA loss from mouse tissue sections, which can be prevented by fixation with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide that irreversibly immobilizes the microRNA at its 5′ phosphate. We determined optimal hybridization parameters for 130 locked nucleic acid probes by recording nucleic acid melting temperature during ISH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Visualization of miRNAs expressed at different levels in the mouse brain.
Figure 2: Formaldehyde and EDC–fixed sections show miRNA localized in the dendrites of neurons.

Similar content being viewed by others

References

  1. Farazi, T.A., Juranek, S.A. & Tuschl, T. Development 135, 1201–1214 (2008).

    Article  CAS  Google Scholar 

  2. Kosik, K.S. Nat. Rev. Neurosci. 7, 911–920 (2006).

    Article  CAS  Google Scholar 

  3. Landgraf, P. et al. Cell 129, 1401–1414 (2007).

    Article  CAS  Google Scholar 

  4. Kloosterman, W.P., Wienholds, E., de Bruijn, E., Kauppinen, S. & Plasterk, R.H. Nat. Methods 3, 27–29 (2006).

    Article  CAS  Google Scholar 

  5. Sokol, N.S. & Ambros, V. Genes Dev. 19, 2343–2354 (2005).

    Article  CAS  Google Scholar 

  6. Nelson, P.T. et al. RNA 12, 187–191 (2006).

    Article  CAS  Google Scholar 

  7. Silahtaroglu, A.N. et al. Nat. Protocols 2, 2520–2528 (2007).

    Article  CAS  Google Scholar 

  8. Thompson, R.C., Deo, M. & Turner, D.L., Methods 43, 153–161 (2007).

    Article  CAS  Google Scholar 

  9. Nuovo, G.J. Methods 44, 39–46 (2008).

    Article  CAS  Google Scholar 

  10. Bak, M. et al. RNA 14, 432–444 (2008).

    Article  CAS  Google Scholar 

  11. Sempere, L.F. et al. Cancer Res. 67, 11612–11620 (2007).

    Article  CAS  Google Scholar 

  12. Wang, W.X. et al. J. Neurosci. 28, 1213–1223 (2008).

    Article  Google Scholar 

  13. Schaefer, A. et al. J. Exp. Med. 204, 1553–1558 (2007).

    Article  CAS  Google Scholar 

  14. Ryan, D.G., Oliveira-Fernandes, M. & Lavker, R.M. Mol. Vis. 12, 1175–1184 (2006).

    CAS  PubMed  Google Scholar 

  15. Mansfield, J.H. et al. Nat. Genet. 36, 1079–1083 (2004).

    Article  CAS  Google Scholar 

  16. Feldman, M.Y. Prog. Nucleic Acid Res. Mol. Biol. 13, 1–49 (1973).

    Article  CAS  Google Scholar 

  17. Masuda, N., Ohnishi, T., Kawamoto, S., Monden, M. & Okubo, K. Nucleic Acids Res. 27, 4436–4443 (1999).

    Article  CAS  Google Scholar 

  18. Tymianski, M. et al. Cell Calcium 21, 175–183 (1997).

    Article  CAS  Google Scholar 

  19. Pall, G.S., Codony-Servat, C., Byrne, J., Ritchie, L. & Hamilton, A. Nucleic Acids Res. 35, e60 (2007).

    Article  Google Scholar 

  20. Kaur, H., Wengel, J. & Maiti, S. Biochemistry 47, 1218–1227 (2008).

    Article  CAS  Google Scholar 

  21. Allawi, H.T. & SantaLucia, J. Jr. Biochemistry 36, 10581–10594 (1997).

    Article  CAS  Google Scholar 

  22. Kye, M.J. et al. RNA 13, 1224–1234 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Memorial Sloan Kettering Sequencing Core for 454 sequencing; S. Juranek, N. Renwick, J. McManus, H. Yamahachi and T. Farazi for comments on the manuscript; L. Fleming for the technical assistance; and C.D. Gilbert for his guidance. T.T. was supported by an Irma T. Hirschl Career Scientist Award, J.T.G.P. supported by a Kirschstein–National Research Service Award fellowship and the project was partly funded by US National Institutes of Health grants GM073047, EY18082-01A2 and MH080442.

Author information

Authors and Affiliations

Authors

Contributions

J.T.G.P., S.H.R. and C.S.-L. designed LNA-modified probes, conducted the mouse ISH experiments and recorded ISH images using microscopy. C.S.-L. recorded the melting profiles for the miRNA-LNA probe duplexes. C.S.-L., C.L., D.H. and A.M. synthesized LNA probes. S.H.R. sectioned all tissues. J.T.G.P. dissected the mouse brain sections for ISH, and M.H. and A.M. prepared RNA for large-scale small RNA sequencing. J.L. advised on chemical conditions used for the miRNA cross-linking. M.Z. and P.B. designed and carried out the small RNA annotation. J.T.G.P. and T.T. wrote the manuscript.

Corresponding author

Correspondence to Thomas Tuschl.

Ethics declarations

Competing interests

T.T. is a co-founder and scientific advisor of Alnylam Pharmaceuticals and a scientific advisor of Regulus Therapeutics.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–3, Supplementary Methods (PDF 11132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pena, J., Sohn-Lee, C., Rouhanifard, S. et al. miRNA in situ hybridization in formaldehyde and EDC–fixed tissues. Nat Methods 6, 139–141 (2009). https://doi.org/10.1038/nmeth.1294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1294

  • Springer Nature America, Inc.

This article is cited by

Navigation