Skip to main content
Log in

Generating somatic mosaicism with a Cre recombinase–microsatellite sequence transgene

  • Brief Communication
  • Published:

From Nature Methods

View current issue Submit your manuscript

Abstract

Strategies for altering constitutional or somatic genotype in mice are well established, but approaches to generate mosaic genotypes in mouse tissues are limited. We showed that a functionally inactive Cre recombinase transgene with a long mononucleotide tract altering the reading frame was stochastically activated in the mouse intestinal tract. We demonstrated the utility of this approach by inducing colonic polyposis after Cre-mediated bi-allelic inactivation of the Apc gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: CDX2P9.5-G22Cre transgenic mice and somatic activation of Cre function.
Figure 2: Polyposis in cecum and proximal colon in CDX2P9.5-G22Cre;Apcflox/flox mice.

Similar content being viewed by others

References

  1. Van Dyke, T. & Jacks, T. Cell 108, 135–144 (2002).

    Article  CAS  Google Scholar 

  2. Jonkers, J. & Berns, A. Nat. Rev. Cancer 2, 251–265 (2002).

    Article  CAS  Google Scholar 

  3. Shibata, H. et al. Science 278, 120–123 (1997).

    Article  CAS  Google Scholar 

  4. Jackson, E.L. et al. Genes Dev. 15, 3243–3248 (2001).

    Article  CAS  Google Scholar 

  5. Flesken-Nikitin, A., Choi, K.C., Eng, J.P., Shmidt, E.N. & Nikitin, A.Y. Cancer Res. 63, 3459–3463 (2003).

    CAS  PubMed  Google Scholar 

  6. Zong, H., Espinosa, J.S., Su, H.H., Muzumdar, M.D. & Luo, L. Cell 121, 479–492 (2005).

    Article  CAS  Google Scholar 

  7. Wang, W., Warren, M. & Bradley, A. Proc. Natl. Acad. Sci. USA 104, 4501–4505 (2007).

    Article  CAS  Google Scholar 

  8. Hinoi, T. et al. Cancer Res. 67, 9721–9730 (2007).

    Article  CAS  Google Scholar 

  9. Pearson, C.E. et al. Nat. Rev. Genet. 6, 729–742 (2005).

    Article  CAS  Google Scholar 

  10. Garcia-Diaz, M. & Kunkel, T.A. Trends Biochem. Sci. 31, 206–214 (2006).

    Article  CAS  Google Scholar 

  11. Soriano, P. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  12. Kinzler, K.W. & Vogelstein, B. Cell 87, 159–170 (1996).

    Article  CAS  Google Scholar 

  13. DePrimo, S.E., Cao, J., Hersh, M.N. & Stringer, J.R. Methods 16, 49–61 (1998).

    Article  CAS  Google Scholar 

  14. Hersh, M.N., Stambrook, P.J. & Stringer, J.R. Mutat. Res. 505, 51–62 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Saunders and the University of Michigan Transgenic Core for outstanding support of the transgenic studies, the University of Michigan Microscopy and Image Analysis Laboratory for assistance with microscopy, S. Camper (University of Michigan) for providing R26R mice and the caggB plasmid, S. Tarle for technical assistance, and K.R. Cho for helpful discussions. This work was supported by US National Institutes of Health grants CA082223, CA085463 and GM067840.

Author information

Authors and Affiliations

Authors

Contributions

A.A., T.H., Y.F. and G.T.B. performed experiments. T.M.G. provided key reagents. E.R.F. supervised the work and wrote the manuscript.

Corresponding author

Correspondence to Eric R Fearon.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Table 1, Supplementary Methods (PDF 655 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akyol, A., Hinoi, T., Feng, Y. et al. Generating somatic mosaicism with a Cre recombinase–microsatellite sequence transgene. Nat Methods 5, 231–233 (2008). https://doi.org/10.1038/nmeth.1182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1182

  • Springer Nature America, Inc.

This article is cited by

Navigation