Skip to main content
Log in

Order through entropy

  • Commentary
  • Published:

From Nature Materials

View current issue Submit your manuscript

Understanding entropic contributions to common ordering transitions is essential for the design of self-assembling systems with addressable complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Entropic forces.
Figure 2: Schematic of the self-assembly of 'DNA bricks' (each of which is a 32-base string of single-stranded DNA that can bind to four neighbouring bricks) into a complex structure where every brick is distinct and has a unique position.

References

  1. Onsager, L. Ann. NY Acad. Sci. 51, 627–659 (1949).

    Article  CAS  Google Scholar 

  2. Vroege, G. J. & Lekkerkerker, H. N. W. Rep. Prog. Phys. 55, 1241–1309 (1992).

    Article  CAS  Google Scholar 

  3. Wood, W. W. & Jacobson, J. D. J. Chem. Phys. 27, 1207–1208 (1957).

    Article  CAS  Google Scholar 

  4. Alder, B. J. & Wainwright, T. E. J. Chem. Phys. 27, 1208–1209 (1957).

    Article  CAS  Google Scholar 

  5. Percus, J. K. (ed.) The Many-Body Problem (Interscience, 1963).

    Google Scholar 

  6. Pusey, P. N. & van Megen, W. Nature 320, 340–342 (1986).

    Article  CAS  Google Scholar 

  7. de Nijs, B. et al. Nature Mater. 14, 56–60 (2015).

    Article  CAS  Google Scholar 

  8. Frenkel, D. in Advances in the Computer Simulations of Liquid Crystals (eds Pasini, P. & Zannoni, C.) 51–72 (Kluwer, 2000).

    Book  Google Scholar 

  9. Damasceno, P. F. et al. Science 337, 453–457 (2012).

    Article  CAS  Google Scholar 

  10. Aarts, D. G. A. L., Schmidt, M. & Lekkerkerker, H. N. W. Science 304, 847–850 (2004).

    Article  CAS  Google Scholar 

  11. Asakura, S. & Oosawa, F. J. Chem. Phys. 22, 1255–1256 (1954).

    Article  CAS  Google Scholar 

  12. Vrij, A. Pure Appl. Chem. 48, 471–483 (1976).

    Article  CAS  Google Scholar 

  13. Lekkerkerker, H. N. W. & Tuinier, R. Colloids and the Depletion Interaction (Springer, 2011).

    Book  Google Scholar 

  14. Feng, L., Laderman, B., Sacanna, S. & Chaikin, P. Nature Mater. 14, 61–65 (2015).

    Article  CAS  Google Scholar 

  15. Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Science 338, 1177–1183 (2012).

    Article  CAS  Google Scholar 

  16. Whitelam, S. & Jack, R. L. Preprint at http://arxiv.org/abs/1407.2505 (2014).

  17. Cadermartiri, L. & Bishop, K. J. M. Nature Mater. 14, 2–9 (2015).

    Article  Google Scholar 

  18. Dobzhansky, T. Am. Biol. Teach. 35, 125–129 (1973).

    Article  Google Scholar 

  19. Clausius, R. Annalen der Physik 125, 353400 (1865).

    Google Scholar 

  20. Planck, M. Annalen der Physik 309, 553–563 (1901).

    Article  Google Scholar 

  21. Frenkel, D. Mol. Phys. 112, 2325–2329 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the ERC Advanced Grant 227758 and the EPSRC Programme Grant EP/I001352/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daan Frenkel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frenkel, D. Order through entropy. Nature Mater 14, 9–12 (2015). https://doi.org/10.1038/nmat4178

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4178

  • Springer Nature Limited

This article is cited by

Navigation