Skip to main content
Log in

Oxide surfaces

Surface science goes inorganic

  • News & Views
  • Published:

From Nature Materials

View current issue Submit your manuscript

A plethora of chemical tools is necessary for probing the surface reconstruction of a complex metal oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: The SrTiO3(110) surface.
Figure 2: Which atoms are on the surface, and where do they sit?

References

  1. Enterkin, J. A. et al. Nature Mater. 9, 245–248 (2010).

    Article  CAS  Google Scholar 

  2. Diebold, U., Anderson, J. F., Ng, K.-O. & Vanderbilt, D. Phys. Rev. Lett. 77, 1322–1325 (1996).

    Article  CAS  Google Scholar 

  3. Ohtomo, A. & Hwang, H. Y. Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  4. Marks, L. D., Erdman, N. & Subramanian, A. J. Phys. Condens. Mater. 13, 10677–10687 (2001).

    Article  CAS  Google Scholar 

  5. Onishi, H. & Iwasawa, Y. Surf. Sci. 313, L783–L789 (1994).

    Article  CAS  Google Scholar 

  6. Brown, I. D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model (Oxford Univ. Press, 2002).

    Google Scholar 

  7. Hall, S. R., Allen, F. H. & Brown, I. D. Acta Crystallogr. A 47, 655–685 (1991).

    Article  Google Scholar 

  8. Brown, I. D. & McMahon, B. Acta Crystallogr. B 58, 317–324 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diebold, U. Surface science goes inorganic. Nature Mater 9, 185–187 (2010). https://doi.org/10.1038/nmat2708

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2708

  • Springer Nature Limited

This article is cited by

Navigation