Skip to main content

Advertisement

Log in

Combined inhibition of DDR1 and Notch signaling is a therapeutic strategy for KRAS-driven lung adenocarcinoma

  • Article
  • Published:

From Nature Medicine

View current issue Submit your manuscript

Abstract

Patients with advanced Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutant lung adenocarcinoma are currently treated with standard chemotherapy because of a lack of efficacious targeted therapies. We reasoned that the identification of mediators of Kras signaling in early mouse lung hyperplasias might bypass the difficulties that are imposed by intratumor heterogeneity in advanced tumors, and that it might unveil relevant therapeutic targets. Transcriptional profiling of KrasG12V-driven mouse hyperplasias revealed intertumor diversity with a subset that exhibited an aggressive transcriptional profile analogous to that of advanced human adenocarcinomas. The top-scoring gene in this profile encodes the tyrosine kinase receptor DDR1. The genetic and pharmacological inhibition of DDR1 blocked tumor initiation and tumor progression, respectively. The concomitant inhibition of both DDR1 and Notch signaling induced the regression of KRAS;TP53-mutant patient-derived lung xenografts (PDX) with a therapeutic efficacy that was at least comparable to that of standard chemotherapy. Our data indicate that the combined inhibition of DDR1 and Notch signaling could be an effective targeted therapy for patients with KRAS-mutant lung adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Gene expression profiling of KrasG12V-driven hyperplasias.
Figure 2: KrasG12V-driven lung tumorigenesis is delayed in the absence of Ddr1.
Figure 3: Pharmacological inhibition of DDR1 induces tumor regression in DDR1+ lung adenocarcinomas.
Figure 4: Co-inhibition of DDR1 and Notch signaling induces tumor apoptosis.
Figure 5: Co-inhibition of DDR1 and Notch compared to chemotherapy.
Figure 6: Co-inhibition of DDR1 and Notch as a therapy in KRAS-driven human lung adenocarcinoma.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    PubMed  Google Scholar 

  2. Pikor, L.A., Ramnarine, V.R., Lam, S. & Lam, W.L. Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung Cancer 82, 179–189 (2013).

    PubMed  Google Scholar 

  3. Meng, D. et al. Prognostic value of K-RAS mutations in patients with non-small cell lung cancer: a systematic review with meta-analysis. Lung Cancer 81, 1–10 (2013).

    PubMed  Google Scholar 

  4. Peters, S., Zimmermann, S. & Adjei, A.A. Oral epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: comparative pharmacokinetics and drug-drug interactions. Cancer Treat. Rev. 40, 917–926 (2014).

    CAS  PubMed  Google Scholar 

  5. Gridelli, C. et al. ALK inhibitors in the treatment of advanced NSCLC. Cancer Treat. Rev. 40, 300–306 (2014).

    CAS  PubMed  Google Scholar 

  6. Jänne, P.A. et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol. 14, 38–47 (2013).

    PubMed  Google Scholar 

  7. Oxnard, G.R., Binder, A. & Jänne, P.A. New targetable oncogenes in non-small-cell lung cancer. J. Clin. Oncol. 31, 1097–1104 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pirker, R. Novel drugs against non-small-cell lung cancer. Curr. Opin. Oncol. 26, 145–151 (2014).

    CAS  PubMed  Google Scholar 

  9. Reck, M. et al. LUME-Lung 1 Study Group. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol. 15, 143–155 (2014).

    CAS  PubMed  Google Scholar 

  10. Gerlinger, M. et al. Cancer: evolution within a lifetime. Annu. Rev. Genet. 48, 215–236 (2014).

    CAS  PubMed  Google Scholar 

  11. Burrell, R.A. & Swanton, C. The evolution of the unstable cancer genome. Curr. Opin. Genet. Dev. 24, 61–67 (2014).

    CAS  PubMed  Google Scholar 

  12. Sweet-Cordero, A. et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat. Genet. 37, 48–55 (2005).

    CAS  PubMed  Google Scholar 

  13. Valiathan, R.R., Marco, M., Leitinger, B., Kleer, C.G. & Fridman, R. Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev. 31, 295–321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Valencia, K. et al. Inhibition of collagen receptor discoidin domain receptor-1 (DDR1) reduces cell survival, homing, and colonization in lung cancer bone metastasis. Clin. Cancer Res. 18, 969–980 (2012).

    CAS  PubMed  Google Scholar 

  15. Yang, S.H. et al. Discoidin domain receptor 1 is associated with poor prognosis of non-small cell lung carcinomas. Oncol. Rep. 24, 311–319 (2010).

    CAS  PubMed  Google Scholar 

  16. Miao, L. et al. Discoidin domain receptor 1 is associated with poor prognosis of non-small cell lung cancer and promotes cell invasion via epithelial-to-mesenchymal transition. Med. Oncol. 30, 626 (2013).

    PubMed  Google Scholar 

  17. Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007).

    CAS  PubMed  Google Scholar 

  18. Guerra, C. et al. Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4, 111–120 (2003).

    CAS  PubMed  Google Scholar 

  19. Monti, S., Tamayo, P., Mesirov, J. & Golub, T. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52, 91–118 (2003).

    Google Scholar 

  20. Okayama, H. et al. Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 72, 100–111 (2012).

    CAS  PubMed  Google Scholar 

  21. Sánchez, M.P. et al. Multiple tyrosine protein kinases in rat hippocampal neurons: isolation of Ptk-3, a receptor expressed in proliferative zones of the developing brain. Proc. Natl. Acad. Sci. USA 91, 1819–1823 (1994).

    PubMed  Google Scholar 

  22. Leitinger, B. Discoidin domain receptor functions in physiological and pathological conditions. Int. Rev. Cell Mol. Biol. 310, 39–87 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Vogel, W.F., Aszódi, A., Alves, F. & Pawson, T. Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol. Cell. Biol. 21, 2906–2917 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Guerrot, D. et al. Discoidin domain receptor 1 is a major mediator of inflammation and fibrosis in obstructive nephropathy. Am. J. Pathol. 179, 83–91 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao, M. et al. Discovery and optimization of 3-(2-(Pyrazolo[1,5-a]pyrimidin-6-yl)ethynyl)benzamides as novel selective and orally bioavailable discoidin domain receptor 1 (DDR1) inhibitors. J. Med. Chem. 56, 3281–3295 (2013).

    CAS  PubMed  Google Scholar 

  26. Kim, H.-G., Hwang, S.-Y., Aaronson, S.A., Mandinova, A. & Lee, S.W. DDR1 receptor tyrosine kinase promotes prosurvival pathway through Notch1 activation. J. Biol. Chem. 286, 17672–17681 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Weijzen, S. et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat. Med. 8, 979–986 (2002).

    CAS  PubMed  Google Scholar 

  28. Maraver, A. et al. Therapeutic effect of γ-secretase inhibition in KrasG12V-driven non-small cell lung carcinoma by derepression of DUSP1 and inhibition of ERK. Cancer Cell 22, 222–234 (2012).

    CAS  PubMed  Google Scholar 

  29. Licciulli, S. et al. Notch1 is required for Kras-induced lung adenocarcinoma and controls tumor cell survival via p53. Cancer Res. 73, 5974–5984 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ito, T. et al. Basic helix-loop-helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development 127, 3913–3921 (2000).

    CAS  PubMed  Google Scholar 

  31. Chen, Z. et al. A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 483, 613–617 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hegde, G.V. et al. Blocking NRG1 and other ligand-mediated Her4 signaling enhances the magnitude and duration of the chemotherapeutic response of non-small cell lung cancer. Sci. Transl. Med. 5, 171ra18 (2013).

    PubMed  Google Scholar 

  33. Westhoff, B. et al. Alterations of the Notch pathway in lung cancer. Proc. Natl. Acad. Sci. USA 106, 22293–22298 (2009).

    CAS  PubMed  Google Scholar 

  34. Hassan, K.A. et al. Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma. Clin. Cancer Res. 19, 1972–1980 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng, Y. et al. A rare population of CD24+ITGB4+Notch(hi) cells drives tumor propagation in NSCLC and requires Notch3 for self-renewal. Cancer Cell 24, 59–74 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    PubMed  Google Scholar 

  38. Li, J. et al. A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nat. Chem. Biol. 6, 291–299 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Crystal, A.S. et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346, 1480–1486 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bailis, W., Yashiro-Ohtani, Y. & Pear, W.S. Identifying direct Notch transcriptional targets using the GSI-washout assay. Methods Mol. Biol. 1187, 247–254 (2014).

    PubMed  Google Scholar 

  41. Meacham, C.E. & Morrison, S.J. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mainardi, S. et al. Identification of cancer initiating cells in K-Ras driven lung adenocarcinoma. Proc. Natl. Acad. Sci. USA 111, 255–260 (2014).

    CAS  PubMed  Google Scholar 

  43. Desai, T.J., Brownfield, D.G. & Krasnow, M.A. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507, 190–194 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gould, S.E., Junttila, M.R. & de Sauvage, F.J. Translational value of mouse models in oncology drug development. Nat. Med. 21, 431–439 (2015).

    CAS  PubMed  Google Scholar 

  45. Day, C.-P., Merlino, G. & Van Dyke, T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163, 39–53 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Johnson, F.M. et al. Phase II study of dasatinib in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 28, 4609–4615 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Blasco, R.B. et al. c-Raf, but not B-Raf, is essential for development of K-Ras oncogene-driven non-small cell lung carcinoma. Cancer Cell 19, 652–663 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Karreth, F.A., Frese, K.K., DeNicola, G.M., Baccarini, M. & Tuveson, D.A. C-Raf is required for the initiation of lung cancer by K-Ras(G12D). Cancer Discov. 1, 128–136 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chetoui, N., El Azreq, M.-A., Boisvert, M., Bergeron, M.-È. & Aoudjit, F. Discoidin domain receptor 1 expression in activated T cells is regulated by the ERK MAP kinase signaling pathway. J. Cell. Biochem. 112, 3666–3674 (2011).

    CAS  PubMed  Google Scholar 

  50. Yen, W.C. et al. Anti-DLL4 has broad spectrum activity in pancreatic cancer dependent on targeting DLL4-Notch signaling in both tumor and vasculature cells. Clin. Cancer Res. 18, 5374–5386 (2012).

    CAS  PubMed  Google Scholar 

  51. Andersson, E.R. & Lendahl, U. Therapeutic modulation of Notch signalling—are we there yet? Nat. Rev. Drug Discov. 13, 357–378 (2014).

    CAS  PubMed  Google Scholar 

  52. Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418–425 (2001).

    CAS  PubMed  Google Scholar 

  53. Hoffman, R.M. Clinically accurate orthotopic mouse models of cancer. Methods Mol. Med. 58, 251–275 (2001).

    CAS  PubMed  Google Scholar 

  54. Ambrogio, C. et al. Modeling lung cancer evolution and preclinical response by orthotopic mouse allografts. Cancer Res. 74, 5978–5988 (2014).

    CAS  PubMed  Google Scholar 

  55. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler Transform. Bioinformatics 26, 589–595 (2010).

    PubMed  PubMed Central  Google Scholar 

  56. Koboldt, D.C. et al. VarScan2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    PubMed  PubMed Central  Google Scholar 

  58. Smyth, G.K., Michaud, J. & Scott, H.S. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21, 2067–2075 (2005).

    CAS  PubMed  Google Scholar 

  59. Rothe, C. et al. The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J. Mol. Biol. 376, 1182–1200 (2008).

    CAS  PubMed  Google Scholar 

  60. Puyol, M. et al. A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 18, 63–73 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Hoey (OncoMed Pharmaceuticals) for providing us with demcizumab and for critical analysis of the data, as well as A. Vivancos (VHIO) for MiSeq analysis. We are thankful to S. Lee (Massachusetts General Hospital and Harvard University) for advice and reagents. We are grateful to O. Kocher, R. Pal and M. Joseph (Beth Israel Deaconess Medical Center) for help with LCM. This work was supported by grants from the European Research Council (ERC-AG/250297-RAS AEAD), the EU-Framework Programme (LSHG-CT-2007-037665/CHEMORES; HEALTH-F2-2010-259770/LUNGTARGET; and HEALTH-2010-260791/EUROCANPLATFORM), the Spanish Ministry of Economy and Competitiveness (SAF2011-30173 and SAF2014-59864-R), the Autonomous Community of Madrid (S2011/BDM-2470/ONCOCYCLE) and an Endowed Chair from the AXA Research Fund (all to M.B.), Fondo de Investigaciones Sanitarias FIS (PI13-01339 and Oncoprofile) and Fundación Mutua Madrileña AP150932014 (to A.Villanueva), a Juan Rodés fellowship from the Carlos III Health Institute (JR13/0002) and Fondo de Investigaciones Sanitarias (FIS PI14-01109) (to E.N.), the National Science Fund for Distinguished Young Scholars of China (81425021; to K.D.) and a postdoctoral fellowship from the Spanish Association Against Cancer, AECC (to C.A.). We thank R. Chiarle, T. Cash, S. Marro, M.L. De Bonis and A. Maraver for their critical reading of the manuscript and L. Paz-Ares for constructive discussion.

Author information

Authors and Affiliations

Authors

Contributions

C.A., D.S., A.Villanueva, M.S., M.H. and M.B. designed experiments, analyzed data and wrote the manuscript. C.A., M.F., A.Villanueva, P.J.F.-M., N.C. and R.B.B. performed experiments and analyzed the data. G.G.-L. performed all bioinformatic studies and did analysis. K.D., X.R. and Z.W. developed and provided the DDR1 inhibitor 7rh. M.S.-C. provided clinical samples and advice. A.Vidal performed human histopathological analysis. E.N. generated and evaluated clinical data.

Corresponding authors

Correspondence to Chiara Ambrogio, David Santamaría or Mariano Barbacid.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Supplementary Tables 1 and 3 (PDF 20203 kb)

Supplementary Table 2

Significantly enriched gene pathways found in H2 versus H1 signatures. (XLSX 17 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrogio, C., Gómez-López, G., Falcone, M. et al. Combined inhibition of DDR1 and Notch signaling is a therapeutic strategy for KRAS-driven lung adenocarcinoma. Nat Med 22, 270–277 (2016). https://doi.org/10.1038/nm.4041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4041

  • Springer Nature America, Inc.

This article is cited by

Navigation