Skip to main content

Advertisement

Log in

Transcription factors TFE3 and TFEB are critical for CD40 ligand expression and thymus-dependent humoral immunity

  • Article
  • Published:

From Nature Immunology

View current issue Submit your manuscript

This article has been updated

Abstract

TFE3 and TFEB are broadly expressed transcription factors related to the transcription factor Mitf. Although they have been linked to cytokine signaling pathways in nonlymphoid cells, their function in T cells is unknown. TFE3-deficient mice are phenotypically normal, whereas TFEB deficiency causes early embryonic death. We now show that combined inactivation of TFE3 and TFEB in T cells resulted in a hyper–immunoglobulin M syndrome due to impaired expression of CD40 ligand by CD4+ T cells. Native TFE3 and TFEB bound to multiple cognate sites in the promoter of the gene encoding CD40 ligand (Cd40lg), and maximum Cd40lg promoter activity and gene expression required TFE3 or TFEB. Thus, TFE3 and TFEB are direct, physiological and mutually redundant activators of Cd40lg expression in activated CD4+ T cells critical for T cell–dependent antibody responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: TFE3 and TFEB expression in T cells and TDN protein expression in TDN-transgenic mice.
Figure 2: Distribution of the predominant B cell and T cell populations in TDN-transgenic mice.
Figure 3: Impaired germinal center formation in TDN-transgenic mice.
Figure 4: Impaired T cell–dependent but intact T cell–independent humoral responses in TDN-transgenic mice.
Figure 5: Inactivation of TFE3 and TFEB in CD4 T cells impairs induction of CD40L expression but not the synthesis of other activation and effector molecules.
Figure 6: T cell–dependent IgG responses in TDN-transgenic mice can be restored by CD40 stimulation in vivo.
Figure 7: TFE3 and TFEB bind to the Cd40lg promoter in vivo and in vitro.
Figure 8: Maximum Cd40lg promoter activity requires binding of native TFE3 and TFEB.

Similar content being viewed by others

Change history

  • 07 September 2006

    In the version of this article initially published online, the title of the first subheading in the results section was incorrect. The correct title is "MiT inactivation in T cells causes hyper-IgM syndrome". The error has been corrected for all versions of the article.

References

  1. Steingrimsson, E., Copeland, N.G. & Jenkins, N.A. Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet. 38, 365–411 (2004).

    Article  CAS  Google Scholar 

  2. Aksan, I. & Goding, C.R. Targeting the microphthalmia basic helix-loop-helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo. Mol. Cell. Biol. 18, 6930–6938 (1998).

    Article  CAS  Google Scholar 

  3. Beckmann, H., Su, L.K. & Kadesch, T. TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif. Genes Dev. 4, 167–179 (1990).

    Article  CAS  Google Scholar 

  4. Roman, C., Cohn, L. & Calame, K. A dominant negative form of transcription activator mTFE3 created by differential splicing. Science 254, 94–97 (1991).

    Article  CAS  Google Scholar 

  5. Roman, C. et al. mTFE3, an X-linked transcriptional activator containing basic helix-loop-helix and zipper domains, utilizes the zipper to stabilize both DNA binding and multimerization. Mol. Cell. Biol. 12, 817–827 (1992).

    Article  CAS  Google Scholar 

  6. Beckmann, H. & Kadesch, T. The leucine zipper of TFE3 dictates helix-loop-helix dimerization specificity. Genes Dev. 5, 1057–1066 (1991).

    Article  CAS  Google Scholar 

  7. Rehli, M., Den Elzen, N., Cassady, A.I., Ostrowski, M.C. & Hume, D.A. Cloning and characterization of the murine genes for bHLH-ZIP transcription factors TFEC and TFEB reveal a common gene organization for all MiT subfamily members. Genomics 56, 111–120 (1999).

    Article  CAS  Google Scholar 

  8. Fisher, D.E. Microphthalmia: a signal responsive transcriptional regulator in development. Pigment Cell Res. 13 suppl. Suppl 8, 145–149 (2000).

    Article  Google Scholar 

  9. Tachibana, M. MITF: a stream flowing for pigment cells. Pigment Cell Res. 13, 230–240 (2000).

    Article  CAS  Google Scholar 

  10. Hershey, C.L. & Fisher, D.E. Mitf and Tfe3: members of a b-HLH-ZIP transcription factor family essential for osteoclast development and function. Bone 34, 689–696 (2004).

    Article  CAS  Google Scholar 

  11. Steingrimsson, E. et al. Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development. Proc. Natl. Acad. Sci. USA 99, 4477–4482 (2002).

    Article  CAS  Google Scholar 

  12. Lin, L., Gerth, A.J. & Peng, S.L. Active inhibition of plasma cell development in resting B Cells by microphthalmia-associated transcription factor. J. Exp. Med. 200, 115–122 (2004).

    Article  CAS  Google Scholar 

  13. Roundy, K., Kollhoff, A., Eichwald, E.J., Weis, J.J. & Weis, J.H. Microphthalmic mice display a B cell deficiency similar to that seen for mast and NK cells. J. Immunol. 163, 6671–6678 (1999).

    CAS  PubMed  Google Scholar 

  14. Rehli, M., Lichanska, A., Cassady, A.I., Ostrowski, M.C. & Hume, D.A. TFEC is a macrophage-restricted member of the microphthalmia-TFE subfamily of basic helix-loop-helix leucine zipper transcription factors. J. Immunol. 162, 1559–1565 (1999).

    CAS  PubMed  Google Scholar 

  15. Rehli, M. et al. Transcription factor Tfec contributes to the IL-4-inducible expression of a small group of genes in mouse macrophages including the granulocyte colony-stimulating factor receptor. J. Immunol. 174, 7111–7122 (2005).

    Article  CAS  Google Scholar 

  16. Kuiper, R.P., Schepens, M., Thijssen, J., Schoenmakers, E.F. & van Kessel, A.G. Regulation of the MiTF/TFE bHLH-LZ transcription factors through restricted spatial expression and alternative splicing of functional domains. Nucleic Acids Res. 32, 2315–2322 (2004).

    Article  CAS  Google Scholar 

  17. Hua, X., Liu, X., Ansari, D.O. & Lodish, H.F. Synergistic cooperation of TFE3 and smad proteins in TGF-β-induced transcription of the plasminogen activator inhibitor-1 gene. Genes Dev. 12, 3084–3095 (1998).

    Article  CAS  Google Scholar 

  18. Nakagawa, Y. et al. TFE3 transcriptionally activates hepatic IRS-2, participates in insulin signaling and ameliorates diabetes. Nat. Med. 12, 107–113 (2006).

    Article  CAS  Google Scholar 

  19. Steingrimsson, E., Tessarollo, L., Reid, S.W., Jenkins, N.A. & Copeland, N.G. The bHLH-Zip transcription factor Tfeb is essential for placental vascularization. Development 125, 4607–4616 (1998).

    CAS  PubMed  Google Scholar 

  20. Huan, C., Sashital, D., Hailemariam, T., Kelly, M.L. & Roman, C.A.J. Renal carcinoma associated transcription factors TFE3 and TFEB are leukemia-inhibitory factor-responsive transcription activators of E-cadherin. J. Biol. Chem. 280, 30225–30235 (2005).

    Article  CAS  Google Scholar 

  21. Tepper, R.I. et al. IL-4 induces allergic-like inflammatory disease and alters T cell development in transgenic mice. Cell 62, 457–467 (1990).

    Article  CAS  Google Scholar 

  22. Durandy, A., Peron, S. & Fischer, A. Hyper-IgM syndromes. Curr. Opin. Rheumatol. 18, 369–376 (2006).

    Article  CAS  Google Scholar 

  23. Lobo, F.M., Xu, S., Lee, C. & Fuleihan, R.L. Transcriptional activity of the distal CD40 ligand promoter. Biochem. Biophys. Res. Commun. 279, 245–250 (2000).

    Article  CAS  Google Scholar 

  24. Lindgren, H., Axcrona, K. & Leanderson, T. Regulation of transcriptional activity of the murine CD40 ligand promoter in response to signals through TCR and the costimulatory molecules CD28 and CD2. J. Immunol. 166, 4578–4585 (2001).

    Article  CAS  Google Scholar 

  25. Parra, E., Mustelin, T., Dohlsten, M. & Mercola, D. Identification of a CD28 response element in the CD40 ligand promoter. J. Immunol. 166, 2437–2443 (2001).

    Article  CAS  Google Scholar 

  26. Cron, R.Q. CD154 transcriptional regulation in primary human CD4 T cells. Immunol. Res. 27, 185–202 (2003).

    Article  CAS  Google Scholar 

  27. Cron, R.Q. et al. Early growth response-1 is required for CD154 transcription. J. Immunol. 176, 811–818 (2006).

    Article  CAS  Google Scholar 

  28. Peng, S.L., Gerth, A.J., Ranger, A.M. & Glimcher, L.H. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 14, 13–20 (2001).

    Article  CAS  Google Scholar 

  29. Hodge, M.R. et al. Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. Immunity 4, 397–405 (1996).

    Article  CAS  Google Scholar 

  30. Harris, N.L. et al. Nuclear factor of activated T (NFAT) cells activity within CD4+ T cells is influenced by activation status and tissue localisation. Microbes Infect. 8, 232–237 (2006).

    Article  CAS  Google Scholar 

  31. Imadome, K., Shirakata, M., Shimizu, N., Nonoyama, S. & Yamanashi, Y. CD40 ligand is a critical effector of Epstein-Barr virus in host cell survival and transformation. Proc. Natl. Acad. Sci. USA 100, 7836–7840 (2003).

    Article  CAS  Google Scholar 

  32. Mach, F. et al. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40–CD40 ligand signaling in atherosclerosis. Proc. Natl. Acad. Sci. USA 94, 1931–1936 (1997).

    Article  CAS  Google Scholar 

  33. Kerkhoff, E., Bister, K. & Klempnauer, K.H. Sequence-specific DNA binding by Myc proteins. Proc. Natl. Acad. Sci. USA 88, 4323–4327 (1991).

    Article  CAS  Google Scholar 

  34. Fisher, D.E., Parent, L.A. & Sharp, P.A. Myc/Max and other helix-loop-helix/leucine zipper proteins bend DNA toward the minor groove. Proc. Natl. Acad. Sci. USA 89, 11779–11783 (1992).

    Article  CAS  Google Scholar 

  35. Giangrande, P.H., Zhu, W., Rempel, R.E., Laakso, N. & Nevins, J.R. Combinatorial gene control involving E2F and E Box family members. EMBO J. 23, 1336–1347 (2004).

    Article  CAS  Google Scholar 

  36. Skov, S. et al. Histone deacetylase inhibitors: a new class of immunosuppressors targeting a novel signal pathway essential for CD154 expression. Blood 101, 1430–1438 (2003).

    Article  CAS  Google Scholar 

  37. Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484 (2005).

    Article  CAS  Google Scholar 

  38. Siebenlist, U., Brown, K. & Claudio, E. Control of lymphocyte development by nuclear factor-κB. Nat. Rev. Immunol. 5, 435–445 (2005).

    Article  CAS  Google Scholar 

  39. Seyama, K. et al. Mutations of the CD40 ligand gene and its effect on CD40 ligand expression in patients with X-linked hyper IgM syndrome. Blood 92, 2421–2434 (1998).

    CAS  PubMed  Google Scholar 

  40. Danese, S. & Fiocchi, C. Platelet activation and the CD40/CD40 ligand pathway: mechanisms and implications for human disease. Crit. Rev. Immunol. 25, 103–121 (2005).

    Article  CAS  Google Scholar 

  41. Schattner, E.J. CD40 ligand in CLL pathogenesis and therapy. Leuk. Lymphoma 37, 461–472 (2000).

    Article  CAS  Google Scholar 

  42. Crow, M.K. & Kirou, K.A. Regulation of CD40 ligand expression in systemic lupus erythematosus. Curr. Opin. Rheumatol. 13, 361–369 (2001).

    Article  CAS  Google Scholar 

  43. Toubi, E. & Shoenfeld, Y. The role of CD40–CD154 interactions in autoimmunity and the benefit of disrupting this pathway. Autoimmunity 37, 457–464 (2004).

    Article  CAS  Google Scholar 

  44. Yi, Y., McNerney, M. & Datta, S.K. Regulatory defects in Cbl and mitogen-activated protein kinase (extracellular signal-related kinase) pathways cause persistent hyperexpression of CD40 ligand in human lupus T cells. J. Immunol. 165, 6627–6634 (2000).

    Article  CAS  Google Scholar 

  45. Hemesath, T.J., Price, E.R., Takemoto, C., Badalian, T. & Fisher, D.E. MAP kinase links the transcription factor microphthalmia to c-Kit signalling in melanocytes. Nature 391, 298–301 (1998).

    Article  CAS  Google Scholar 

  46. Weilbaecher, K.N. et al. Linkage of M-CSF signaling to Mitf, TFE3, and the osteoclast defect in Mitfmi/mi mice. Mol. Cell 8, 749–758 (2001).

    Article  CAS  Google Scholar 

  47. Cattoretti, G. et al. BCL-6 protein is expressed in germinal-center B cells. Blood 86, 45–53 (1995).

    CAS  Google Scholar 

  48. McAdam, A.J. et al. ICOS is critical for CD40-mediated antibody class switching. Nature 409, 102–105 (2001).

    Article  CAS  Google Scholar 

  49. Yamazaki, T. et al. Essential immunoregulatory role for BCAP in B cell development and function. J. Exp. Med. 195, 535–545 (2002).

    Article  CAS  Google Scholar 

  50. Jerne, N.K. et al. Plaque forming cells: methodology and theory. Transplant. Rev. 18, 130–191 (1974).

    CAS  PubMed  Google Scholar 

  51. Gross, J.A., Callas, E. & Allison, J.P. Identification and distribution of the costimulatory receptor CD28 in the mouse. J. Immunol. 149, 380–388 (1992).

    CAS  PubMed  Google Scholar 

  52. Hasbold, J., Johnson-Leger, C., Atkins, C.J., Clark, E.A. & Klaus, G.G. Properties of mouse CD40: cellular distribution of CD40 and B cell activation by monoclonal anti-mouse CD40 antibodies. Eur. J. Immunol. 24, 1835–1842 (1994).

    Article  CAS  Google Scholar 

  53. Rubinson, D.A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406 (2003).

    Article  CAS  Google Scholar 

  54. Slomiany, B.A., Kelly, M.M. & Kurtz, D.T. Extraction of nuclear proteins with increased DNA binding activity. Biotechniques 28, 938–942 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Braithwaite-Harte and S. Mirra (Department of Pathology, State University of New York, Downstate Medical Center at Brooklyn) for sharing expertise and reagents for histology; H. Siddiqi (Department of Microbiology and Immunology, State University of New York, Downstate Medical Center at Brooklyn) for help in establishing ELISAs; O. Ramadan for technical assistance in mouse genotyping; K. Calame (Columbia University, New York, New York) for sharing unpublished results and discussions; K. Alexandropoulos (Columbia University, New York, New York), W. Pear (University of Pennsylvania, Philadelphia, Pennsylvania) and A. Pernis (Columbia University New York, New York) for critical reading of the manuscript, advice and discussions; and P. Cortes and lab members (Mount Sinai School of Medicine, New York, New York) for providing access to their laboratory for primary T cell transfection studies. Supported by the Dean's Initiative Pilot Project (State University of New York, Downstate Medical Center; C.A.J.R.) and the National Institutes of Health (DK65011 to C.A.J.R.).

Author information

Authors and Affiliations

Authors

Contributions

C.H. and C.A.J.R. conceptualized and designed the research; C.H. created the TDN-transgenic mice and did most of the experimental work with the technical assistance of M.L.K.; R.S. did ELISAs with the assistance of C.H.; I.S. and S.R.S.G. prepared and analyzed spleen sections in conjunction with C.H.; C.A.J.R. and C.H. conceptualized and wrote the manuscript with input from S.R.S.G.; C.A.J.R. supervised the project.

Corresponding author

Correspondence to Christopher A J Roman.

Ethics declarations

Competing interests

C.H. and C.A.J.R. are named on provisional patent R1545-100, “Method for Treating Immune Dysfunction by Regulation of CD40L Expression,” filed in December 2005 by the Research Foundation of the State University of New York.

Supplementary information

Supplementary Fig. 1

TFE3, TFEB and Mitf expression. (PDF 452 kb)

Supplementary Fig. 2

TDN-Tg description and inhibition of TFEB expression by slRNAi. (PDF 218 kb)

Supplementary Fig. 3

Characterization of interactions of TFE3 and TFEB with each other and DNA. (PDF 572 kb)

Supplementary Fig. 4

Native TFE3 and TFEB are important for CD40L expression in Jurkat T cells. (PDF 170 kb)

Supplementary Table 1

Oligonucleotides for EMSA. (PDF 97 kb)

Supplementary Table 2

Oligonucleotides for cloning Cd40lg and CD40LG promoters and for E-box mutagenesis. (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huan, C., Kelly, M., Steele, R. et al. Transcription factors TFE3 and TFEB are critical for CD40 ligand expression and thymus-dependent humoral immunity. Nat Immunol 7, 1082–1091 (2006). https://doi.org/10.1038/ni1378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1378

  • Springer Nature America, Inc.

This article is cited by

Navigation