Skip to main content
Log in

Spectrum of slip behaviour in Tohoku fault zone samples at plate tectonic slip rates

  • Letter
  • Published:

From Nature Geoscience

View current issue Submit your manuscript

Abstract

During the 2011 Tohoku-oki earthquake, extremely extensive coseismic slip ruptured shallow parts of the Japan Trench subduction zone and breached the sea floor1,2. This part of the subduction zone also hosts slow slip events (SSE)3,4. The fault thus seems to have a propensity for slip instability or quasi-instability that is unexpected on the shallow portions of important fault zones. Here we use laboratory experiments to slowly shear samples of rock recovered from the Tohoku-oki earthquake fault zone as part of the Japan Trench Fast Drilling Project. We find that infrequent perturbations in rock strength appear spontaneously as long-term SSE when the samples are sheared at a constant rate of about 8.5 cm yr−1, equivalent to the plate-convergence rate. The shear strength of the rock drops by 3 to 6%, or 50 kPa to 120 kPa, over about 2 to 4 h. Slip during these events reaches peak velocities of up to 25 cm yr−1, similar to SSE observed in several circum-Pacific subduction zones. Furthermore, the sheared samples exhibit the full spectrum of fault-slip behaviours, from fast unstable slip to slow steady creep, which can explain the wide range of slip styles observed in the Japan Trench. We suggest that the occurrence of SSE at shallow depths may help identify fault segments that are frictionally unstable and susceptible to large coseismic slip propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Overview of the Tohoku Region of the Japan Trench.
Figure 2: Summary of experimental results.
Figure 3: Comparison of laboratory and natural SSE.

Similar content being viewed by others

References

  1. Fujiwara, T. et al. The 2011 Tohoku-Oki earthquake: Displacement reaching the trench axis. Science 334, 1240 (2011).

    Article  Google Scholar 

  2. Ito, Y. et al. Frontal wedge deformation near the source region of the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 38, L00G05 (2011).

    Article  Google Scholar 

  3. Fukao, Y. & Kanjo, K. A zone of low-frequency earthquakes beneath the inner wall of the Japan Trench. Tectonophysics 67, 153–162 (1980).

    Article  Google Scholar 

  4. Ito, Y. et al. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake. Tectonophysics 600, 14–26 (2013).

    Article  Google Scholar 

  5. Nishizawa, A., Kanazawa, T., Iwasaki, T. & Shimamura, H. Spatial distribution of earthquakes associated with the Pacific plate subduction off northeastern Japan revealed by ocean bottom and land observation. Phys. Earth Planet. Inter. 75, 168–175 (1992).

    Article  Google Scholar 

  6. Hino, R. et al. Aftershock distribution of the 1994 Sanriku-oki earthquake (Mw 7.7) revealed by ocean bottom seismographic observation. J. Geophys. Res. 105, 21697–21710 (2000).

    Article  Google Scholar 

  7. Obana, K. et al. Aftershocks near the updip end of the 2011 Tohoku-Oki earthquake. Earth Planet. Sci. Lett. 382, 111–116 (2013).

    Article  Google Scholar 

  8. Hashimoto, C., Noda, A., Sagiya, T. & Matsu’ura, M. Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion. Nature Geosci. 2, 141–144 (2009).

    Google Scholar 

  9. Scholz, C. H. Earthquakes and friction laws. Nature 391, 37–42 (1998).

    Article  Google Scholar 

  10. Ikari, M. J., Saffer, D. M. & Marone, C. Frictional and hydrologic properties of clay-rich fault gouge. J. Geophys. Res. 114, B05409 (2009).

    Article  Google Scholar 

  11. Underwood, M. B. in The Seismogenic Zone of Subduction Thrust Faults (eds Dixon, T. H. & Moore, J. C.) 42–84 (Columbia Univ. Press, 2007).

    Google Scholar 

  12. Saffer, D. M. & Marone, C. Comparison of smectite- and illite-rich gouge frictional properties: Application to the updip limit of the seismogenic zone along subduction megathrusts. Earth Planet. Sci. Lett. 215, 219–235 (2003).

    Article  Google Scholar 

  13. Chester, F. M., Mori, J. J., Eguchi, N., Toczko, S. & Expedition 343/343T Scientists. Integrated Ocean Drilling Program Vol. 343/343T (Integrated Ocean Drilling Program Management International, Inc., 2013).

  14. Kameda, J. et al. Pelagic smectite as an important factor in tsunamigenic slip along the Japan Trench. Geology 43, 155–158 (2015).

    Article  Google Scholar 

  15. Ikari, M. J., Kameda, J., Saffer, D. M. & Kopf, A. J. Strength characteristics of Japan Trench borehole samples in the high-slip region of the 2011 Tohoku-Oki earthquake. Earth Planet. Sci. Lett. 412, 35–41 (2015).

    Article  Google Scholar 

  16. Ujiie, K. et al. Low coseismic shear stress on the Tohoku-Oki megathrust determined from laboratory experiments. Science 342, 1211–1214 (2013).

    Article  Google Scholar 

  17. DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett. 21, 2191–2194 (1994).

    Article  Google Scholar 

  18. Baumberger, T., Berthoud, P. & Caroli, C. Physical analysis of state- and rate-dependent friction law II: Dynamic friction. Phys. Rev. B 60, 3928–3939 (1999).

    Article  Google Scholar 

  19. Liu, Y. & Rice, J. R. Spontaneous and triggered aseismic deformation transients in a subduction fault model. J. Geophys. Res. 112, B09404 (2007).

    Google Scholar 

  20. Ide, S., Beroza, G. C., Shelly, D. R. & Uchide, T. A scaling law for slow earthquakes. Nature 447, 76–79 (2007).

    Article  Google Scholar 

  21. Hirose, H., Hirahara, K., Kimata, F., Fujii, N. & Miyazaki, S. A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan. Geophys. Res. Lett. 21, 3237–3240 (1999).

    Article  Google Scholar 

  22. Hirose, H. & Obara, K. Repeating short- and long-term slow slip events with deep tremor activity around the Bungo channel region, southwest Japan. Earth Planet. Space 57, 961–972 (2005).

    Article  Google Scholar 

  23. Miyazaki, S., Segall, P., McGuire, J. J., Kato, T. & Hatanaka, Y. Spatial and temporal evolution of stress and slip rate during the 2000 Tokai slow earthquake. J. Geophys. Res. 111, B03409 (2006).

    Google Scholar 

  24. Wallace, L. M. & Beavan, J. A large slow slip event on the central Hikurangi subduction interface beneath the Manawatu region, North Island, New Zealand. Geophys. Res. Lett. 33, L11301 (2006).

    Article  Google Scholar 

  25. Douglas, A., Beavan, J., Wallace, L. & Townend, J. Slow slip on the northern Hikurangi subduction interface, New Zealand. Geophys. Res. Lett. 32, L16305 (2005).

    Article  Google Scholar 

  26. Ohta, Y., Freymuller, J. T., Hreinsdóttir, S. & Suito, H. A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone. Earth Planet. Sci. Lett. 247, 108–116 (2006).

    Article  Google Scholar 

  27. Rogers, G. & Dragert, H. Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science 300, 1942–1943 (2003).

    Article  Google Scholar 

  28. Szeliga, W., Melbourne, T., Santillan, M. & Miller, M. GPS constraints on 34 slow slip events within the Cascadia subduction zone. J. Geophys. Res. 113, B04404 (2008).

    Article  Google Scholar 

  29. Outerbridge, K. C. et al. A tremor and slip event on the Cocos-Caribbean subduction zone as measured by a global positioning system (GPS) and seismic network on the Nicoya Peninsula, Costa Rica. J. Geophys. Res. 115, B10408 (2010).

    Article  Google Scholar 

  30. Kostoglodov, V. et al. A large silent earthquake in the Guerrero seismic gap, Mexico. Geophys. Res. Lett. 30, 1807 (2003).

    Article  Google Scholar 

  31. Ikari, M. J., Hüpers, A. & Kopf, A. J. Shear strength of sediments approaching subduction in the Nankai Trough, Japan as constraints on forearc mechanics. Geochem. Geophys. Geosyst. 14, 2716–2730 (2013).

    Article  Google Scholar 

  32. Dieterich, J. H. in Mechanical Behavior of Crustal Rocks Vol. 24 (eds Carter, N. L. et al.) 102–120 (Geophys. Monogr, Ser., American Geophysical Union, 1981).

    Google Scholar 

  33. Reinen, L. A. & Weeks, J. D. Determination of rock friction constitutive parameters using an iterative least squares inversion method. J. Geophys. Res. 98, 15937–15950 (1993).

    Article  Google Scholar 

  34. Blanpied, M. L., Marone, C. J., Lockner, D. A., Byerlee, J. D. & King, D. P. Quantitative measure of the variation in fault rheology due to fluid-rock interactions. J. Geophys. Res. 103, 9691–9712 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

This research uses samples and/or data provided by the Integrated Ocean Drilling Program (IODP). We are grateful for discussions with the IODP Expedition 343 scientific party, and H. Savage for her constructive comments. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) Grant #IK107/1-1 to M.J.I.

Author information

Authors and Affiliations

Authors

Contributions

M.J.I. conducted friction experiments and data analysis. All authors contributed to planning and writing the manuscript.

Corresponding author

Correspondence to Matt J. Ikari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikari, M., Ito, Y., Ujiie, K. et al. Spectrum of slip behaviour in Tohoku fault zone samples at plate tectonic slip rates. Nature Geosci 8, 870–874 (2015). https://doi.org/10.1038/ngeo2547

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2547

  • Springer Nature Limited

This article is cited by

Navigation