Skip to main content

Advertisement

Log in

Large-scale variations in the stoichiometry of marine organic matter respiration

  • Letter
  • Published:

From Nature Geoscience

View current issue Submit your manuscript

Abstract

The elemental composition of marine organic matter governs resource competition among plankton, and couples the global cycles of carbon, nutrients and oxygen. Observations have revealed systematic large-scale variation in the ratios of these essential elements removed from surface waters by phytoplankton1,2,3,4,5. However, an impact of this variability on deep ocean properties has not been detected. Here we use a data-constrained ocean circulation model and observed long-term mean distributions of dissolved oxygen and the nutrient phosphate to show that there is a threefold variation across latitudes in the amount of dissolved oxygen consumed per unit of phosphate released during organic matter respiration. This pattern of remineralization ratios is shown to significantly modify the extent and distribution of low-oxygen water masses in the interior ocean. We also find that ocean biomes with distinct light and nutrient availability are characterized by different regional stoichiometries. These findings suggest that in a more stratified ocean, an increase in light exposure and decrease in nutrient concentration could raise the C:P ratio of phytoplankton, and the associated carbon storage by the ocean’s biological pump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: O2:P regeneration ratios in the sub-surface ocean.
Figure 2: Surface biomes and sub-surface O2:P regeneration ratios.
Figure 3: Impact of variable stoichiometry on low-oxygen waters.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Arrigo, K. R. et al. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283, 365–367 (1999).

    Article  Google Scholar 

  2. Green, S. E. & Sambrotto, R. N. Plankton community structure and export of C, N, P, and Si in the Antarctic Circumpolar Current. Deep-Sea Res. II 53, 620–643 (2006).

    Article  Google Scholar 

  3. Weber, T. & Deutsch, C. Ocean nutrient ratios governed by phytoplankton biogeography. Nature 467, 550–554 (2010).

    Article  Google Scholar 

  4. Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nature Geosci. 6, 279–283 (2013).

    Article  Google Scholar 

  5. Martiny, A. C., Vrugt, J. A., Primeau, F. W. & Lomas, M. W. Regional variation in the particulate organic carbon to nitrogen ratio in the surface ocean. Glob. Biogeochem. Cycles 27, 723–731 (2013).

    Article  Google Scholar 

  6. Karl, D. M. et al. Ecological nitrogen-to-phosphorus stoichiometry at Station ALOHA. Deep-Sea Res. II 48, 1529–1566 (2001).

    Article  Google Scholar 

  7. Ito, T. & Follows, M. Preformed phosphate, soft tissue pump and atmospheric CO2 . J. Mar. Res. 63, 813–839 (2005).

    Article  Google Scholar 

  8. Lenton, T. M. & Watson, A. J. Redfield revisited: 1. Regulation of nitrate, phosphate, and oxygen in the ocean. Glob. Biogeochem. Cycles 14, 225–248 (2000).

    Article  Google Scholar 

  9. Redfield, A. C., Ketchum, B. H. & Richards, F. A. in The Sea Vol. 2 (ed. Hill, M.) Ch. 2, 26–77 (Interscience, 1963).

    Google Scholar 

  10. Paulmier, A., Kriest, I. & Oschlies, A. Stoichiometries of remineralisation and denitrification in global biogeochemical ocean models. Biogeosciences 6, 923–935 (2009).

    Article  Google Scholar 

  11. Weber, T. & Deutsch, C. Ocean nitrogen reservoir regulated by plankton diversity and ocean circulation. Nature 489, 419–422 (2012).

    Article  Google Scholar 

  12. Takahashi, T., Broecker, W. S. & Langer, S. Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res. 90, 6907–6924 (1985).

    Article  Google Scholar 

  13. Anderson, L. A. & Sarmiento, J. L. Redfield ratios of remineralization determined by nutrient data analysis. Glob. Biogeochem. Cycles 8, 65–80 (1994).

    Article  Google Scholar 

  14. Körtzinger, A., Hedges, J. I. & Quay, P. D. Redfield ratios revisited: Removing the biasing effect of anthropogenic CO2 . Limnol. Oceanogr. 46, 964–970 (2001).

    Article  Google Scholar 

  15. DeVries, T. & Primeau, F. Dynamically and observationally constrained estimates of water-mass distributions and ages in the global ocean. J. Phys. Oceanogr. 41, 2381–2401 (2011).

    Article  Google Scholar 

  16. DeVries, T. The oceanic anthropogenic CO2 sink: Storage, air-sea fluxes, and transports over the industrial era. Glob. Biogechem. Cycles 28, 631–647 (2014).

    Article  Google Scholar 

  17. Garcia, H. E. et al. in World Ocean Atlas 2009 Vol. 4 (ed. Levitus, S.) 398 (US Government Printing Office, 2010).

    Google Scholar 

  18. Garcia, H. E. et al. in World Ocean Atlas 2009 Vol. 3 (ed. Levitus, S.) 344 (US Government Printing Office, 2010).

    Google Scholar 

  19. Bianchi, D., Dunne, J. P., Sarmiento, J. L. & Galbraith, E. D. Data-based estimates of suboxia, denitrification, and N2O production in the ocean and their sensitivities to dissolved O2 . Glob. Biogeochem. Cycles 26, GB2009 (2012).

    Article  Google Scholar 

  20. Geider, R. & LaRoche, J. Redfield revisited: Variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1–17 (2002).

    Article  Google Scholar 

  21. Anderson, L. A. On the hydrogen and oxygen content of marine phytoplankton. Deep-Sea Res. I 42, 1675–1680 (1995).

    Article  Google Scholar 

  22. Hopkinson, C. S. & Vallino, J. J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433, 142–145 (2005).

    Article  Google Scholar 

  23. Pahlow, M. & Oschlies, A. Chain model of phytoplankton P, N, and light colimitation. Mar. Ecol. Prog. Ser. 376, 69–83 (2009).

    Article  Google Scholar 

  24. Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nature Clim. Change 3, 979–984 (2013).

    Article  Google Scholar 

  25. Dickman, E. M., Vanni, M. J. & Horgan, M. J. Interactive effects of light and nutrients on phytoplankton stoichiometry. Oecologia 149, 676–689 (2006).

    Article  Google Scholar 

  26. Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Article  Google Scholar 

  27. Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J. & Manabe, S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249 (1998).

    Article  Google Scholar 

  28. Friedlingstein, P. et al. Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).

    Article  Google Scholar 

  29. Ito, T., Follows, M. J. & Boyle, E. A. Is AOU a good measure of respiration in the oceans? Geophys. Res. Lett. 31, L17305 (2004).

    Google Scholar 

  30. DeVries, T., Deutsch, C., Rafter, P. A. & Primeau, F. Marine denitrification rates determined from a global 3-D inverse model. Biogeoscience 10, 2481–2496 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the US National Science Foundation (OCE-1131548) and by the Gordon and Betty Moore Foundation (grant GBMF3775).

Author information

Authors and Affiliations

Authors

Contributions

T.D. performed the model calculations. Both authors designed the study, analysed the data and wrote the paper.

Corresponding author

Correspondence to Tim DeVries.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1672 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeVries, T., Deutsch, C. Large-scale variations in the stoichiometry of marine organic matter respiration. Nature Geosci 7, 890–894 (2014). https://doi.org/10.1038/ngeo2300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2300

  • Springer Nature Limited

This article is cited by

Navigation