Skip to main content
Log in

Fibrillin–2 (FBN2) mutations result in the Marfan–like disorder, congenital contractural arachnodactyly

  • Letter
  • Published:

From Nature Genetics

View current issue Submit your manuscript

Abstract

Congenital contractural arachnodactyly (CCA) is an autosomal dominant disorder that is phenotypically similar to Marfan syndrome (MFS) and characterized by arachnodactyly, dolichostenomelia, scoliosis, multiple congenital contractures and abnormalities of the external ears1. In contrast to MFS, CCA does not affect the aorta or the eyes. Two closely related genes, FBN1 located on chromosome 15q15–21.3 and FBN2 located at 5q23–31, encode large fibrillin proteins found in extracellular matrix structures called microfibrils2–4. The MFS is caused by mutations in FBN1, while CCA has been genetically linked to FBN2 (refs 2, 5, 6). We now describe a pair of FBN2 missense mutations in two CCA patients that cause substitution of distinct cysteine residues in separate epidermal growth-factor-like (EGF) repeats. Our study provides final proof of the association between FBN2 mutations and CCA pathology, thus establishing the role of the fibrillin-2 in extracellular matrix physiology and pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beals, R.K. & Hetcht, F. Congenital contractural arachnodactyly: A heritable disorder of connective tissue. J. Bone Jt. Surg. 53A, 987–993 (1971).

    Article  Google Scholar 

  2. Lee, B. et al. Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature 352, 330–334 (1991).

    Article  CAS  Google Scholar 

  3. Corson, G.M., Chalberg, S.C., Dietz, H.C., Charbonneau, N.L. & Sakai, L.Y. Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5′ end. Genomics 17, 476–484 (1993).

    Article  CAS  Google Scholar 

  4. Zhang, H. et al. Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J. Cell Biol. 124, 855–863 (1994).

    Article  CAS  Google Scholar 

  5. Dietz, H.C. et al. Marfan syndrome caused by a recurrent de novomissense mutation in the fibrillin gene. Nature 352, 337–339. (1991).

    Article  CAS  Google Scholar 

  6. Tsipouras, R et al. Genetic linkage of the Marfan syndrome, ectopia lentis, and congenital contractural arachnodactyly to the fibrillin genes on chromosomes 15 and 5. New Engl. J. Mod. 326, 905–909 (1992).

    Article  CAS  Google Scholar 

  7. Davis, E.C. Immunolocalization of microfibril and microfibril-associated proteins in the subendothelial matrix of the developing mouse aorta. J. Cell Sci. 107, 727–736 (1994).

    CAS  PubMed  Google Scholar 

  8. Zhang, H., Hu, W. & Ramirez, F. Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils. J. Cell Biol. 129, 1165–1176 (1995).

    Article  CAS  Google Scholar 

  9. Tynan, K. et al. Mutation screening of complete fibrillin-1 coding sequence: report of five new mutations, including two in 8-cysteine domains. Hum. molec. Genet. 2, 1813–1821 (1993).

    Article  CAS  Google Scholar 

  10. Dietz, H.C., Saraiva, J.M., Pyeritz, R.E., Cutting, G.R. & Francomano, C.A. Clustering of fibrillin missense mutations in Marfan syndrome patients at cysteine residues in EGF-like domians. Hum. Mutat. 1, 366–374 (1993).

    Article  Google Scholar 

  11. Nijbroek, G. et al. Fifteen novel FBN1 mutations causing Marfan syndrome detected by heteroduplex analysis of genomic amplicons. Am. J. hum. Genet. 57, 8–21 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Eldadah, Z.A., Brenn, T., Furthmayr, H. & Dietz, H.C. Expression of a mutant human fibrillin allele upon a normal human or murine genetic background recapitulates a Marfan cellular phenotype. J. clin. Invest. 95, 874–880 (1995).

    Article  CAS  Google Scholar 

  13. Sakai, L.Y., Keene, D.R. & Engvall, E., A new 350KD glycoprotein, is a component of extracellular microfibrils. J. Cell Biol. 103, 2499–2509 (1986).

    Article  CAS  Google Scholar 

  14. Yeh, H. et al. Structure of the human gene encoding the associated microfibrillar protein (MFAP1) and localization to chromosome 15q15-q21. Genomics 23, 443–449 (1994).

    Article  CAS  Google Scholar 

  15. Brown-Augsburger, P. et al. Microfibril-associated glycoprotein binds to the carboxyl-terminal domain of tropoelastin and is a substrate for transglutaminase. J. biol. Chem. 269, 28443–28449 (1994).

    CAS  PubMed  Google Scholar 

  16. Milewicz, D.M., Pyeritz, R.E., Crawford, E.S. & Byers, P.H. Marfan syndrome: Defective synthesis, secretion and extracellular matrix formation of fibrillin by cultured dermal fibroblasts. J. clin. Invest. 89, 79–86 (1992).

    Article  CAS  Google Scholar 

  17. Aoyama, T., Franke, U., Dietz, H.C. & Furthmayr, H. Quantitative differences in biosynthesis and extracellular deposition of fibrillin in cultured fibroblasts distinguish five groups of Marfan syndrome patients and suggest distinct pathogenetic mechanisms. J. clin. Invest. 94, 130–137 (1994).

    Article  CAS  Google Scholar 

  18. Raghunath, M., Kielty, C.M. & Steinmann, B. Truncated profibrillin of a Marfan patient is of apparent similar size as fibrillin: Intracellular retention leads to over-N-glycosylation. J. molec. Biol. 248, 901–909 (1995).

    Article  CAS  Google Scholar 

  19. Devereaux, R.B. & Brown, W.T. Genetics of mitral valve prolapse. Prog. med.Genef. 5, 139 (1983).

    Google Scholar 

  20. Lujan, J.E., Carlin, M.E. & Lubs, H.A. A form of X-linked mental retardation with Marfanoid habitus. Am. J. med. Genet. 17, 311–322 (1984).

    Article  CAS  Google Scholar 

  21. Shprintzen, R.J. & Goldberg, R.B. A recurrent pattern syndrome of cranio-synnotosis associated with arachnodactyly and abdominal hernias. J. Craniofacial Genet. Devel. Biol. 2, 65–74 (1982).

    CAS  PubMed  Google Scholar 

  22. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Plainview, New York,1989).

    Google Scholar 

  23. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analyt. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  24. Orita, M., Youichi, S. & Sekiya, S. Rapid and sensitive detection of point mutations and DNA polymorphisms using polymerase chain reaction. Genomics 5, 974–879 (1989).

    Article  Google Scholar 

  25. Biddinger, A.L., Hecht, J. & Milewicz, D.M. Repeat polymorphisms in human fibrillin genes on chromosome 15 (Fib 15) and chromosome 5 (Fib 5). Hum. molec. Genet. 2, 13–23 (1993).

    Article  Google Scholar 

  26. Cooke, R.M. et al. The solution structure of human epidermal growth factor. Nature 327, 339–341 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putnam, E., Zhang, H., Ramirez, F. et al. Fibrillin–2 (FBN2) mutations result in the Marfan–like disorder, congenital contractural arachnodactyly. Nat Genet 11, 456–458 (1995). https://doi.org/10.1038/ng1295-456

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1295-456

  • Springer Nature America, Inc.

This article is cited by

Navigation