Skip to main content

Advertisement

Log in

The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels

  • Article
  • Published:

From Nature Energy

View current issue Submit your manuscript

Abstract

The size of the global bioenergy resource has been studied extensively; however, the corresponding life-cycle greenhouse gas benefit of bioenergy remains largely unexplored at the global scale. Here we quantify the optimal use of global bioenergy resources to offset fossil fuels in 2050. We find that bioenergy could reduce life-cycle emissions from fossil fuel-derived electricity and heat, and liquid fuels, by a maximum of 4.9–38.7 Gt CO2e, or 9–68%, and that offsetting electricity and heat with bioenergy is on average 1.6–3.9 times more effective for emissions mitigation than offsetting liquid fuels. At the same time, liquid fuels make up 18–49% of the optimal allocation of bioenergy in our results for 2050, indicating that a mix of bioenergy end-uses maximizes life-cycle emissions reductions. Finally, emissions reductions are maximized by limiting deployment of total available primary bioenergy to 29–91% in our analysis, demonstrating that life-cycle emissions are a constraint on the usefulness of bioenergy for mitigating global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Availability and specific LC GHG emissions of optimally allocated final bioenergy compared with fossil fuel-derived final energy demand and emissions in 2050.
Figure 2: Deployment of biomass-derived final energy versus cumulative GHG emissions mitigation.
Figure 3: Deployment of biomass-derived final energy versus payback period for LUC emissions.

Similar content being viewed by others

References

  1. About the Bioenergy Technologies Office: Growing America’s Energy Future (US DOE BETO, 2015); http://energy.gov/eere/bioenergy/about-bioenergy-technologies-office-growing-americas-energy-future

  2. State of Play on the Sustainability of Solid and Gaseous Biomass Used for Electricity, Heating and Cooling in the EU (European Commission, 2014); https://ec.europa.eu/energy/en/topics/renewable-energy/biomass

  3. IPCC Task Force on National Greenhouse Gas Inventories (TFI), General Guidance and Other Inventory Issues (IPCC, accessed 6 January 2016); http://www.ipcc-nggip.iges.or.jp/faq/faq.html

  4. Wang, M., Wu, M. & Huo, H. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plan types. Environ. Res. Lett. 2, 024001 (2007).

    Google Scholar 

  5. Huo, H., Wang, M., Bloyd, C. & Putsche, V. Life-cycle assessment of energy use and greenhouse gas emissions of soybean-derived biodiesel and renewable fuels. Environ. Sci. Technol. 43, 750–756 (2009).

    Google Scholar 

  6. Farrell, A. E. et al. Ethanol can contribute to energy and environmental goals. Science 311, 506–508 (2006).

    Google Scholar 

  7. Stratton, R. W., Wong, H. M. & Hileman, J. I. Quantifying variability in life cycle greenhouse gas inventories of alternative middle distillate transportation fuels. Environ. Sci. Technol. 45, 4637–4644 (2011).

    Google Scholar 

  8. Wang, M., Han, J., Cai, H. & Elgowainy, A. Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ. Res. Lett. 7, 045905 (2012).

    Google Scholar 

  9. Staples, M. D. et al. Lifecycle greenhouse gas footprint and minimum selling price of renewable diesel and jet fuel from fermentation and advanced fermentation production technologies. Energy Environ. Sci. 7, 1545–1554 (2014).

    Google Scholar 

  10. Edwards, R. et al. JEC Well-to-Wheels Analysis: Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context (European Commission Joint Research Centre, 2014); http://iet.jrc.ec.europa.eu/about-jec/sites/iet.jrc.ec.europa.eu.about-jec/files/documents/wtw_report_v4a_march_2014_final_333_rev_140408.pdf

    Google Scholar 

  11. Elgowainy, A. et al. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles (Argonne National Laboratory, accessed 3 September 2015); http://www.transportation.anl.gov/pdfs/TA/629.pdf

    Google Scholar 

  12. Burnham, A. et al. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal and petroleum. Environ. Sci. Technol. 46, 619–627 (2012).

    Google Scholar 

  13. Searchinger, T. et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).

    Google Scholar 

  14. Hertel, T. W. et al. Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. BioScience 60, 223–231 (2010).

    Google Scholar 

  15. Plevin, R. J. et al. Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environ. Sci. Technol. 44, 8015–8021 (2010).

    Google Scholar 

  16. Fischer, G. & Schrattenholzer, L. Global bioenergy potentials through 2050. Biomass Bioenergy 20, 151–159 (2001).

    Google Scholar 

  17. Hoogwijk, M., Faaij, A., Eickhout, B., de Vries, B. & Turkenburg, W. Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 29, 225–257 (2005).

    Google Scholar 

  18. Field, C. B., Campbell, J. E. & Lobell, D. B. Biomass energy: the scale of the potential resource. Trends Ecol. Evolut. 23, 65–72 (2008).

    Google Scholar 

  19. Ros, J., Olivier, J., Notenboom, J., Croezen, H. & Bergsma, G. Sustainability of Biomass in a Bio-Based Economy (PBL Netherlands Environmental Assessment Agency, 2012); http://www.pbl.nl/sites/default/files/cms/publicaties/PBL-2012-Sustainability-of-biomass-in-a-BBE-500143001_0.pdf

    Google Scholar 

  20. Searle, S. & Malins, C. A reassessment of global bioenergy potential in 2050. GCB Bioenergy 7, 328–336 (2015).

    Google Scholar 

  21. Slade, R., Bauen, A. & Gross, R. Global bioenergy resources. Nat. Clim. Change 4, 99–105 (2014).

    Google Scholar 

  22. Energy Technology Perspectives 2014 (OECD, IEA, accessed 3 September 2015); http://www.iea.org/etp/etp2014

  23. Global Arable Land Area and Area Harvested (FAOSTAT, accessed 11 October 2016); http://fenix.fao.org/faostat/beta/en/#data/RL

  24. Daioglou, V., Stehfest, E., Wicke, B., Faaij, A. & van Vuuren, D. P. Projections of the availability and cost of residues from agriculture and forestry. Glob. Change Biol. Bioenergy 8, 456–470 (2015).

    Google Scholar 

  25. IEA CO2 Emissions from Fuel Combustion: Highlights (OECD, IEA, 2015); http://www.iea.org/publications/freepublications/publication/CO2EmissionsFromFuelCombustionHighlights2015.pdf

  26. Trivedi, P., Malina, R. & Barrett, S. R. H. Environmental and economic tradeoffs of using corn stover for liquid fuels and power production. Energy Environ. Sci. 8, 1428–1437 (2015).

    Google Scholar 

  27. Steubing, B., Zah, R. & Ludwig, C. Heat, electricity or transportation? The optimal use of residual and waste biomass in Europe from and environmental perspective. Environ. Sci. Technol. 46, 164–171 (2012).

    Google Scholar 

  28. Campbell, J. E., Lobell, D. B. & Field, C. B. Greater transportation energy and GHG offsets from bioelectricity than ethanol. Science 324, 1055–1057 (2009).

    Google Scholar 

  29. Technology Roadmap: Bioenergy for Heat and Power (OECD, IEA, accessed 3 September 2015); http://www.iea.org/publications/freepublications/publication/technology-roadmap-bioenergy-for-heat-and-power-.html

  30. Maximising the Environmental Benefits of Europe’s Bioenergy Potential (EEA, 2008); http://www.eea.europa.eu/publications/technical_report_2008_10

  31. Dray, L., Evans, A., Reynolds, T. & Schaefer, A. Mitigation of aviation emissions of carbon dioxide. Transp. Res. Rec. 2177, 17–26 (2010).

    Google Scholar 

  32. Hileman, J., De la Rosa Blanco, E., Bonnefoy, P. A. & Carter, N. A. The carbon dioxide challenge facing aviation. Prog. Aerosp. Sci. 63, 84–95 (2013).

    Google Scholar 

  33. Sgouridis, S., Bonnefoy, P. A. & Hansman, R. J. Air transportation in a carbon constrained world: long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation. Transp. Res. A 45, 1077–1091 (2011).

    Google Scholar 

  34. Lal, R. Carbon sequestration. Phil. Trans. R. Soc. B 363, 815–830 (2008).

    Google Scholar 

  35. Hileman, J. I. et al. Near-Term Feasibility of Alternative Jet Fuels (RAND Corporation, 2009); http://www.rand.org/pubs/technical_reports/TR554.html

    Google Scholar 

  36. Bond, J. Q. et al. Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energy Environ. Sci. 7, 1500–1523 (2014).

    Google Scholar 

  37. Cox, K., Renouf, M., Dargan, A., Turner, C. & Klein-Marcuschamer, D. Environmental life cycle assessment (LCA) of aviation biofuels from microalgae, Pongamia pinnata, and sugarcane molasses. Biofuel Bioprod. Bior. 8, 579–593 (2014).

    Google Scholar 

  38. Fan, J., Shonnard, D. R., Kalnes, T. N., Johnsen, P. B. & Rao, S. A life cycle assessment of pennycress (Thlaspi arvense L.)–derived jet fuel and diesel. Biomass Bioenergy 55, 87–100 (2013).

    Google Scholar 

  39. Seber, G., Malina, R., Pearlson, M. N., Olcay, H., Hileman, J. I. & Barrett, S. R. H. Environmental and economic assessment of producing hydroprocessed jet and diesel fuel from waste oils and tallow. Biomass Bioenergy 67, 108–118 (2014).

    Google Scholar 

  40. Shonnard, D. R., Williams, L. & Kalnes, T. B. Camelina-derived jet fuel and diesel: sustainable advanced biofuels. Environ. Prog. Sustain. Energy 29, 382–392 (2010).

    Google Scholar 

  41. Pearlson, M. N., Wollersheim, C. W. & Hileman, J. I. A techno-economic review of hydroprocessed renewable esters and fatty acids for jet fuel production. Biofuel Bioprod. Bior. 7, 89–96 (2013).

    Google Scholar 

  42. Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program; Final Rule Federal Register 40 CFR Part 80, 14669–15320 (US EPA, 2010).

  43. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC Document 32009L0028, Procedure2008/0016/COD (EU EC, 2009).

  44. Langeveld, J. W. A., Dixon, J., van Keulen, H. & Quist-Wessel, P. M. F. Analyzing the effect of biofuel expansion on land use in major producing countries: evidence of increased multiple cropping. Biofuel Bioprod. Bior. 8, 49–58 (2014).

    Google Scholar 

  45. Wigmosta, M. K., Coleman, A. M., Skaggs, R. J., Huesemass, M. H. & Lane, L. J. National microalgae biofuel production potential and resource demand. Wat. Resour. Res. 47, W00H04 (2011).

    Google Scholar 

  46. Rose, S. K. et al. Bioenergy in energy transformation and climate management. Climatic Change 123, 477–493 (2014).

    Google Scholar 

  47. Humpenoeder, F. et al. Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environ. Res. Lett. 9, 064029 (2014).

    Google Scholar 

  48. Azar, C., Johansson, D. J. A. & Mattsson, N. Meeting global temperature targets—the role of bioenergy with carbon capture and storage. Environ. Res. Lett. 8, 1–8 (2013).

    Google Scholar 

  49. Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 659–740 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  50. Database of Historical Areal Crop Yields (FAOSTAT, accessed 20 August 2016); http://faostat3.fao.org/home/E

  51. Global Agro-Ecological Zones (GAEZ) Model (IIASA, accessed 20 August 2016); http://www.gaez.iiasa.ac.at

  52. Land Use Harmonization Project of Future Land Use Projections (Univ. Maryland, accessed 20 August 2016); http://luh.umd.edu

  53. Gibbs, H., Yui, S. & Plevin, R. New Estimates of Soil and Biomass Carbon Stocks for Global Economic Models (GTAP Technical Paper No. 33, Purdue University, 2014); https://www.gtap.agecon.purdue.edu/resources/download/6688.pdf

  54. SSP Database (IIASA, accessed 20 August 2016); https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about

  55. Lal, R. World crop residues production and implications of its use as a biofuel. Environ. Int. 31, 575–584 (2005).

    Google Scholar 

  56. Andrews, S. S. Crop Residue Removal for Biomass Energy production: Effects on Soils and Recommendations (United States Department of Agriculture – Natural Resource Conservation Service, 2006); http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053255.pdf

    Google Scholar 

  57. Pratt, M. R. et al. Synergies between cover crops and corn stover removal. Agric. Syst. 130, 67–76 (2014).

    Google Scholar 

  58. Searle, S. & Malins, C. Will energy crop yields meet expectations? Biomass Bioenergy 65, 3–12 (2014).

    Google Scholar 

  59. Smeets, E. M. W. & Faaij, A. P. C. Bioenergy potentials from forestry in 2050. Climatic Change 81, 353–390 (2007).

    Google Scholar 

  60. McKeever, D. B. Inventories of Woody Residues and Solid Wood Waste in the United States (United States Department Agriculture – Forest Service, Forest Product Laboratory, 2002); http://originwww.fpl.fs.fed.us/documnts/pdf2004/fpl_2004_mckeever002.pdf

    Google Scholar 

  61. Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision (United Nations Food and Agricultural Agency, 2012); http://www.fao.org/docrep/016/ap106e/ap106e.pdf

    Google Scholar 

  62. Jayathilakan, K. et al. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. J. Food Sci. Technol. 49, 278–293 (2012).

    Google Scholar 

  63. Lopez, D. E., Mullins, J. C. & Bruce, D. A. Energy life cycle assessment for the production of biodiesel from rendered lipids in the United States. Ind. Eng. Chem. Res. 49, 2419–2432 (2010).

    Google Scholar 

  64. Niederl, A. & Narodoslawsky, M. in Feedstocks for the Future (eds Bozell, J. J. & Patel, M. K. ) 239–252 (American Chemical Society, 2006).

    Google Scholar 

  65. The Greenhouse Gases, Regulated Emissions, Energy Use in Transportation Model (Argonne National Laboratory, 2015); https://greet.es.anl.gov/greet_1_series

  66. World Energy Outlook 2014 (OECD, IEA, 2014).

Download references

Acknowledgements

Financial support for this work was provided in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), application number PGSD3-454375-2014, and in part by the Martin Family Society of Fellows for Sustainability. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSERC or the Martin Family Society. The authors wish to acknowledge W. Tyner of Purdue University for his assistance with the GTAP AEZ-EF database, and J. Hileman and D. Williams of the US Federal Aviation Administration for their comments on this work.

Author information

Authors and Affiliations

Authors

Contributions

All three authors contributed equally to the conception and design of this work, interpretation of the results, and editing of the text. M.D.S. performed the analysis and drafted the manuscript.

Corresponding author

Correspondence to Steven R. H. Barrett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–33, Supplementary Tables 1–18, Supplementary Notes 1–11 and Supplementary References. (PDF 1648 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staples, M., Malina, R. & Barrett, S. The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nat Energy 2, 16202 (2017). https://doi.org/10.1038/nenergy.2016.202

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2016.202

  • Springer Nature Limited

This article is cited by

Navigation