Skip to main content

Advertisement

Log in

Impact of ocean acidification on the structure of future phytoplankton communities

  • Letter
  • Published:

From Nature Climate Change

View current issue Submit your manuscript

Abstract

Phytoplankton form the foundation of the marine food web and regulate key biogeochemical processes. These organisms face multiple environmental changes1, including the decline in ocean pH (ocean acidification) caused by rising atmospheric p CO 2 (ref. 2). A meta-analysis of published experimental data assessing growth rates of different phytoplankton taxa under both ambient and elevated p CO 2 conditions revealed a significant range of responses. This effect of ocean acidification was incorporated into a global marine ecosystem model to explore how marine phytoplankton communities might be impacted over the course of a hypothetical twenty-first century. Results emphasized that the differing responses to elevated p CO 2 caused sufficient changes in competitive fitness between phytoplankton types to significantly alter community structure. At the level of ecological function of the phytoplankton community, acidification had a greater impact than warming or reduced nutrient supply. The model suggested that longer timescales of competition- and transport-mediated adjustments are essential for predicting changes to phytoplankton community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Meta-analysis of GRR of phytoplankton in p CO 2 manipulation experiments.
Figure 2: Model parameterization of GRR to elevated p CO 2 .
Figure 3: Biomass change between 2000 and 2100.
Figure 4: Modelled global changes over the twenty-first century.

Similar content being viewed by others

References

  1. Gruber, N. Warming up, turning sour, losing breath: Ocean biogeochemistry under global change. Phil. Trans. R. Soc. A 369, 1980–1996 (2011).

    Article  CAS  Google Scholar 

  2. Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).

    Article  Google Scholar 

  3. Boyd, P. W. Framing biological responses to a changing ocean. Nature Clim. Change 3, 530–533 (2013).

    Article  Google Scholar 

  4. Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Article  Google Scholar 

  5. Dutkiewicz, S., Scott, J. R. & Follows, M. J. Winners and losers: Ecological and biogeochemical changes in a warming ocean. Glob. Biogeochem. Cycles 27, 463–477 (2013).

    Article  CAS  Google Scholar 

  6. Taucher, J. & Oschlies, A. Can we predict the direction of marine primary production change under global warming? Geophys. Res. Lett. 38, LO2603 (2011).

    Article  Google Scholar 

  7. IPCC Climate Change 2013: The Physical Science Basis (eds Stoker, T. F. et al.) (Cambridge Univ. Press, 2013).

    Google Scholar 

  8. Hutchins, D. A., Fu, F.-X., Webb, E. A., Walworth, N. & Tagliabue, A. Taxon-specific response of marine nitrogen fixers to elevated carbon dioxide concentrations. Nature Geosci. 6, 790–795 (2013).

    Article  CAS  Google Scholar 

  9. Langer, G., Nehrke, G., Probert, I., Ly, J. & Ziveri, P. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6, 2637–2646 (2009).

    Article  CAS  Google Scholar 

  10. Fu, F. X., Warner, M. E., Zhang, Y. H., Feng, Y. Y. & Hutchins, D. A. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). J. Phycol. 43, 485–496 (2007).

    Article  Google Scholar 

  11. Lohbeck, K. T. et al. Adaptive evolution of a key phytoplankton species to ocean acidification. Nature Geosci. 5, 346–351 (2012).

    Article  CAS  Google Scholar 

  12. Tatters, A. O. et al. Short- and long-term conditioning of a temperate marine diatom community to acidification and warming. Phil. Trans. R. Soc. B 368, 20120437 (2013).

    Article  Google Scholar 

  13. Crawfurd, K. J., Raven, J. A., Wheeler, G. L., Baxter, E. J. & Joint, I. The response of Thalassiosira pseudonana to long-term exposure to increased CO2 and decreased pH. PLoS ONE 6, e26695 (2011).

    Article  CAS  Google Scholar 

  14. Tatters, A. O. et al. Short- versus long-term responses to changing CO2 in a coastal dinoflagellate bloom: Implications for interspecific competitive interactions and community structure. Evolution 67, 1879–1891 (2013).

    Article  Google Scholar 

  15. Lomas, M. W. et al. Effect of ocean acidification on cyanobacteria in the subtropical North Atlantic. Aquat. Microb. Ecol. 66, 211–222 (2012).

    Article  Google Scholar 

  16. Sokolov, A. et al. Probabilistic forecast for 21st century climate based on uncertainties in emissions (without policy) and climate parameters. J. Clim. 22, 5175–5204 (2009).

    Article  Google Scholar 

  17. Boyd, P. W. et al. Marine phytoplankton temperature versus growth responses from polar to tropical waters—outcome of a scientific community-wide study. PLoS ONE 8, e63091 (2013).

    Article  CAS  Google Scholar 

  18. Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).

    Article  CAS  Google Scholar 

  19. Eppley, R. W. Temperature and phytoplankton growth in the sea. Fishery Bull. 70, 1063–1085 (1972).

    Google Scholar 

  20. Hofmann, G. E., Smith, J. E. & Johnson, K. S. High-frequency dynamics of ocean pH: A multi ecosystem comparison. PLoS ONE 6, e28983 (2011).

    Article  CAS  Google Scholar 

  21. Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    Article  CAS  Google Scholar 

  22. Bopp, L., Aumont, O., Cadule, P., Alvain, S. & Gehlen, M. Response of diatoms distribution to global warming and potential implications: A global model study. Geophys. Res. Lett. 32, L19606 (2005).

    Article  Google Scholar 

  23. Feng, Y. et al. Effects of increasing p CO 2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response. Mar. Ecol. Prog. Ser. 288, 13–25 (2009).

    Google Scholar 

  24. Kim, J.-M. et al. The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnol. Oceanogr. 51, 1629–1636 (2006).

    Article  CAS  Google Scholar 

  25. Brussaard, C. P. D. et al. Arctic microbial community dynamics influenced by elevated CO2 levels. Biogeosciences 10, 719–731 (2013).

    Article  Google Scholar 

  26. Tortell, P. D., DiTullio, G. R., Sigman, D. M. & Morel, F. M. M. CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Mar. Ecol. Prog. Ser. 236, 37–43 (2002).

    Article  Google Scholar 

  27. Hare, C. E. et al. Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea. Mar. Ecol. Prog. Ser. 352, 9–16 (2007).

    Article  CAS  Google Scholar 

  28. Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nature Clim. Change 3, 919–925 (2013).

    Article  Google Scholar 

  29. Schaum, E., Rost, B., Millar, A. J. & Collins, S. Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nature Clim. Change 3, 298–302 (2013).

    Article  CAS  Google Scholar 

  30. Boyd, P. W., Lennartz, S. T., Glover, D. M. & Doney, S. C. Biological ramifications of climate-change-mediated oceanic multi-stressors. Nature Clim. Change 5, 71–79 (2015).

    Article  Google Scholar 

  31. Marshall, J., Adcroft, A., Hill, C. N., Perelman, L. & Heisey, C. A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 102, 5753–5766 (1997).

    Article  Google Scholar 

  32. Large, W. G., McWilliams, J. C. & Doney, S. C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363–403 (1994).

    Article  Google Scholar 

  33. Gent, P. R. & McWilliams, J. C. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–155 (1990).

    Article  Google Scholar 

  34. Sokolov, A. & Stone, P. H. A flexible climate model for use in integrated assessments. Clim. Dynam. 14, 291–303 (1998).

    Article  Google Scholar 

  35. Schlosser, C. A., Kicklighter, D. & Sokolov, A. A Global Land System Framework for Integrated Climate-Change Assessments Report No. 147 (MIT Joint Program for the Science and Policy of Global Change, 2007); http://web.mit.edu/globalchange/www/MITJPSPGC_Rpt147.pdf

  36. Bonan, G. B. et al. The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Clim. 15, 3123–3149 (2002).

    Article  Google Scholar 

  37. Felzer, B. et al. Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. Tellus B 56, 230–248 (2004).

    Article  Google Scholar 

  38. Liu, Y. Modeling the Emissions of Nitrous Oxide (N 2 O) and Methane (CH 4 ) from the Terrestrial Biosphere to the Atmosphere Report No. 10 (MIT Joint Program on the Science and Policy of Global Change, 1996); http://globalchange.mit.edu/files/document/MITJPSPGC_Report10.pdf

  39. Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteorol. Soc. 77, 437–470 (1996).

    Article  Google Scholar 

  40. Randall, D. A. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 8 (IPCC, Cambridge Univ. Press, 2007).

    Google Scholar 

  41. Yin, J. A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett. 32, L18701 (2005).

    Article  Google Scholar 

  42. Fyfe, J. C. & Saenko, O. A. Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett. 33, L06701 (2006).

    Google Scholar 

  43. Parekh, P., Follows, M. J. & Boyle, E. A. Decoupling of iron and phosphate in the global ocean. Glob. Biogeochem. Cycles 19, GB2020 (2005).

    Article  Google Scholar 

  44. Luo, C. et al. Combustion iron distribution and deposition. Glob. Biogeochem. Cycles 22, GB1012 (2008).

    Article  Google Scholar 

  45. Elrod, V. A., Berelson, W. M., Coale, K. H. & Johnson, K. S. The flux of iron from continental shelf sediments: A missing source for global budgets. Geophys. Res. Lett. 31, L12307 (2004).

    Article  Google Scholar 

  46. Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).

    Article  CAS  Google Scholar 

  47. Dutkiewicz, S., Follows, M. J. & Bragg, J. Modeling the coupling of ocean ecology and biogeochemistry. Glob. Biogeochem. Cycles 23, GB1012 (2009).

    Article  Google Scholar 

  48. Kooijman, S. A. L. M. Dynamic Energy and Mass Budget in Biological Systems (Cambridge Univ. Press, 2000).

    Book  Google Scholar 

  49. Bissinger, J. E., Montagnes, D. J. S., Sharples, J. & Atkinson, D. Predicting marine phytoplankton maximum growth rates from temperature: Improving on the Eppley curve using quantile regression. Limnol. Oceanogr. 53, 487–493 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from NSF grant OCE-1315201 (J.J.M., S.D., M.J.F., S.T.D.), DOE grant DE-FG02-94ER61937 (S.D., J.S.), the Gordon and Betty Moore foundation (S.D., M.J.F.), NSF grant OCE 13-14336 (S.T.D.), German–Israel Joint Research BMBF-MOST grant GR1950 (I.B.-F.), the BEACON Center for the Study of Evolution in Action NSF grant DBI-0939454 (J.J.M.) and a NASA Astrobiology Institute Postdoctoral Fellowship (J.J.M.).

Author information

Authors and Affiliations

Authors

Contributions

S.D., M.J.F., J.J.M. and I.B.-F. conceived the experimental design, J.J.M. conducted the literature meta-analysis, J.S. provided the fields from the earth system model, S.D. conducted the numerical experiments and analysed the results. O.L., I.B.-F. and S.T.D. provided contextual input. S.D. and J.J.M. co-wrote the paper, with input from all authors, especially I.B.-F. and S.T.D.

Corresponding author

Correspondence to Stephanie Dutkiewicz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutkiewicz, S., Morris, J., Follows, M. et al. Impact of ocean acidification on the structure of future phytoplankton communities. Nature Clim Change 5, 1002–1006 (2015). https://doi.org/10.1038/nclimate2722

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2722

  • Springer Nature Limited

This article is cited by

Navigation