Skip to main content
Log in

Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4

  • Brief Communication
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

Cytokinins are classic hormones that orchestrate plant growth and development and the integrity of stem cell populations. Cytokinin receptors are eukaryotic sensor histidine kinases that are activated by both naturally occurring adenine-type cytokinins and urea-based synthetic compounds. Crystal structures of the Arabidopsis thaliana histidine kinase 4 sensor domain in complex with different cytokinin ligands now rationalize the hormone-binding specificity of the receptor and may spur the design of new cytokinin ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: AHK4 binds cytokinins with its membrane-distal PAS domain.
Figure 2: Structural plasticity in the AHK4 PAS domain allows for the binding of diverse cytokinins.
Figure 3: Urea-based synthetic cytokinins mimic adenine-type hormone-receptor interactions.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Jaillais, Y. & Chory, J. Nat. Struct. Mol. Biol. 17, 642–645 (2010).

    Article  CAS  Google Scholar 

  2. Werner, T. & Schmülling, T. Curr. Opin. Plant Biol. 12, 527–538 (2009).

    Article  CAS  Google Scholar 

  3. Kakimoto, T. Annu. Rev. Plant Biol. 54, 605–627 (2003).

    Article  CAS  Google Scholar 

  4. Inoue, T. et al. Nature 409, 1060–1063 (2001).

    Article  CAS  Google Scholar 

  5. Mähönen, A.P. et al. Genes Dev. 14, 2938–2943 (2000).

    Article  Google Scholar 

  6. Suzuki, T. et al. Plant Cell Physiol. 42, 107–113 (2001).

    Article  CAS  Google Scholar 

  7. Ueguchi, C., Sato, S., Kato, T. & Tabata, S. Plant Cell Physiol. 42, 751–755 (2001).

    Article  CAS  Google Scholar 

  8. Yamada, H. et al. Plant Cell Physiol. 42, 1017–1023 (2001).

    Article  CAS  Google Scholar 

  9. Riefler, M., Novak, O., Strnad, M. & Schmülling, T. Plant Cell 18, 40–54 (2006).

    Article  CAS  Google Scholar 

  10. Higuchi, M. et al. Proc. Natl. Acad. Sci. USA 101, 8821–8826 (2004).

    Article  CAS  Google Scholar 

  11. Heyl, A. et al. BMC Evol. Biol. 7, 62 (2007).

    Article  Google Scholar 

  12. Amasino, R. Plant Physiol. 138, 1177–1184 (2005).

    Article  CAS  Google Scholar 

  13. Romanov, G.A., Lomin, S.N. & Schmülling, T. J. Exp. Bot. 57, 4051–4058 (2006).

    Article  CAS  Google Scholar 

  14. Bajguz, A. & Piotrowska, A. Phytochemistry 70, 957–969 (2009).

    Article  CAS  Google Scholar 

  15. Ponting, C.P. & Aravind, L. Curr. Biol. 7, R674–R677 (1997).

    Article  CAS  Google Scholar 

  16. Zhang, Z. & Hendrickson, W.A. J. Mol. Biol. 400, 335–353 (2010).

    Article  CAS  Google Scholar 

  17. Gao, R. & Stock, A.M. Annu. Rev. Microbiol. 63, 133–154 (2009).

    Article  CAS  Google Scholar 

  18. Pas, J., von Grotthuss, M., Wyrwicz, L.S., Rychlewski, L. & Barciszewski, J. FEBS Lett. 576, 287–290 (2004).

    Article  CAS  Google Scholar 

  19. Caillet, J. & Droogmans, L. J. Bacteriol. 170, 4147–4152 (1988).

    Article  CAS  Google Scholar 

  20. Gray, J., Gelvin, S.B., Meilan, R. & Morris, R.O. Plant Physiol. 110, 431–438 (1996).

    Article  CAS  Google Scholar 

  21. Pasternak, O. et al. Plant Cell 18, 2622–2634 (2006).

    Article  Google Scholar 

  22. Mizuno, T. & Yamashino, T. Methods Enzymol. 471, 335–356 (2010).

    Article  CAS  Google Scholar 

  23. Miller, C.O., Skoog, F., Okumura, F.S., Von Saltza, M.H. & Strong, F.M. J. Am. Coll. Surg. 78, 1375–1380 (1956).

    CAS  Google Scholar 

  24. Zhou, Y.-F. et al. J. Mol. Biol. 383, 49–61 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Mizuno for providing plasmid pCold IV–AHK4 and strain KMI001, M. Jinek and Y. Jaillais for comments on the manuscript and W. Kwiatkowski and staff at beamlines BL 8.2.1 and 8.2.2 of the Advanced Light Source in Berkeley, California, for technical support. This work was supported by long-term fellowships from the European Molecular Biology Organization, the International Human Frontier Science Program Organization and the Marc and Eva Stern foundation (M.H.) and by grants from the US National Institutes of Health (NIH) (5R01GM52413), the US National Science Foundation (IOS-0649389) and the Howard Hughes Medical Institute (J.C.). Maintenance of the Salk X-ray equipment is supported by NIH grant P30 NS057096.

Author information

Authors and Affiliations

Authors

Contributions

M.H. designed the project; M.H. and T.D. expressed and purified proteins and carried out functional assays; M.H. crystallized, phased and refined the structures; M.H. analyzed the data; J.C. supervised the project; and M.H. wrote the paper.

Corresponding author

Correspondence to Joanne Chory.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 5589 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hothorn, M., Dabi, T. & Chory, J. Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. Nat Chem Biol 7, 766–768 (2011). https://doi.org/10.1038/nchembio.667

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.667

  • Springer Nature America, Inc.

This article is cited by

Navigation