Skip to main content
Log in

Glycolytic intermediates induce amorphous calcium carbonate formation in crustaceans

  • Brief Communication
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

It has been thought that phosphorus in biominerals made of amorphous calcium carbonate (ACC) might be related to ACC formation, but no such phosphorus-containing compounds have ever been identified. Crustaceans use ACC biominerals in exoskeleton and gastroliths so that they will have easy access to calcium carbonate inside the body before and after molting. We have identified phosphoenolpyruvate and 3-phosphoglycerate, intermediates of the glycolytic pathway, in exoskeleton and gastroliths and found them important for stabilizing ACC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: PEP, 3PG and citrate as major organic compounds in the hard tissues of the crayfish, P. clarkii.
Figure 2: The effect of phosphate, PEP, 3PG and citrate on the induction of ACC formation.
Figure 3: PEP and 3PG are secreted from the gastrolith disk epithelia to the extracellular space at the premolt stage.

Similar content being viewed by others

References

  1. Aizenberg, J., Lambert, G., Weiner, S. & Addadi, L. J. Am. Chem. Soc. 124, 32–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Belcher, A.M. et al. Nature 381, 56–58 (1996).

    Article  CAS  Google Scholar 

  3. Falini, G., Albeck, S., Weiner, S. & Addadi, L. Science 271, 67–69 (1996).

    Article  Google Scholar 

  4. Kato, T., Sugawara, A. & Hosoda, N. Adv. Mater. 14, 869–877 (2002).

    Article  CAS  Google Scholar 

  5. Luquet, G. & Marin, F. C. R. Palevol 3, 515–534 (2004).

    Article  Google Scholar 

  6. Weiner, S. Am. Zool. 24, 945–951 (1984).

    Article  CAS  Google Scholar 

  7. Meldrum, F.C. & Cölfen, H. Chem. Rev. 108, 4332–4432 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Nudelman, F. et al. Nat. Mater. 9, 1004–1009 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Bentov, S., Weil, S., Glazer, L., Sagi, A. & Berman, A. J. Struct. Biol. 171, 207–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Inoue, H., Ozaki, N. & Nagasawa, H. Biosci. Biotechnol. Biochem. 65, 1840–1848 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Shechter, A. et al. Proc. Natl. Acad. Sci. USA 105, 7129–7134 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Tsutsui, N., Ishii, K., Takagi, Y., Watanabe, T. & Nagasawa, H. Zoolog. Sci. 16, 619–628 (1999).

    Article  CAS  Google Scholar 

  13. Addadi, L., Raz, S. & Weiner, S. Adv. Mater. 15, 959–970 (2003).

    Article  CAS  Google Scholar 

  14. Brečvić, L. & Nielsen, A.E. J. Cryst. Growth 98, 504–510 (1989).

    Article  Google Scholar 

  15. Faatz, M., Gröhn, F. & Wegner, G. Adv. Mater. 16, 996–1000 (2004).

    Article  CAS  Google Scholar 

  16. Koga, N., Nakagoe, Y. & Tanaka, H. Thermochim. Acta 318, 239–244 (1998).

    Article  CAS  Google Scholar 

  17. Loste, E. & Meldrum, C. Chem. Commun. (Camb.) 901–902 (2001).

  18. House, W.A. J. Colloid Interface Sci. 119, 505–511 (1987).

    Article  CAS  Google Scholar 

  19. Sawada, K., Abdel-Aal, N., Sekino, H. & Satoh, K. Dalton Trans. 3, 342–347 (2003).

    Article  Google Scholar 

  20. Hikida, T., Nagasawa, H. & Kogure, T. in Biomineralization (BIOM2001) (eds. Kobayashi, I. & Ozawa, H.) 81–84 (Tokai University Press, Kanagawa, 2003).

  21. Levi-Kalisman, Y., Raz, S., Weiner, S., Addadi, L. & Sagi, I. Adv. Funct. Mater. 12, 43–48 (2002).

    Article  CAS  Google Scholar 

  22. Raz, S., Testeniere, O., Hecker, A., Weiner, S. & Luquet, G. Biol. Bull. 203, 269–274 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Pouget, E.M. et al. Science 323, 1455–1458 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki, M. et al. Science 325, 1388–1390 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Tohse, H. et al. Cryst. Growth Des. 9, 4897–4901 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to J.J. Hull for critical reading of the manuscript. We also thank Y. Kagayama (Fisheries Station of Yamagata Prefecture, Japan) for supplying us with the mitten crab. This work was supported by Grants-in-Aid for Scientific Research (nos. 17GS0311, 22248037 and 22228006) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Contributions

A.S. performed the experiments and wrote the manuscript. A.S., S. Nagasaka and H.N. designed the experiments. K.F. assisted in the NMR measurements and spectral analyses. S. Nagata assisted in the MS measurements. I.A., K.S. and T.K. conducted XRD measurements and supervised crystallographic analysis. S.S. and H.N. supervised the whole project.

Corresponding author

Correspondence to Hiromichi Nagasawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–13 and Supplementary Tales 1 & 2 (PDF 5670 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, A., Nagasaka, S., Furihata, K. et al. Glycolytic intermediates induce amorphous calcium carbonate formation in crustaceans. Nat Chem Biol 7, 197–199 (2011). https://doi.org/10.1038/nchembio.532

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.532

  • Springer Nature America, Inc.

This article is cited by

Navigation