Skip to main content
Log in

Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring

  • Brief Communication
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

Beewolf digger wasps cultivate specific symbiotic bacteria (Streptomyces spp.) that are incorporated into the larval cocoon for protection against pathogens. We identified the molecular basis of this protective symbiosis in the natural context and demonstrate that the bacteria produce a 'cocktail' of nine antibiotic substances. The complementary action of all symbiont-produced antibiotics confers a potent antimicrobial defense for the wasp larvae that parallels the 'combination prophylaxis' known from human medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Wasp symbionts from female antennae produce an antibiotic cocktail on the larval cocoon.
Figure 2: Biological activity of antibiotic substances produced by beewolf symbionts.

Similar content being viewed by others

References

  1. Dubilier, N., Bergin, C. & Lott, C. Nat. Rev. Microbiol. 6, 725–740 (2008).

    Article  CAS  Google Scholar 

  2. Currie, C.R., Scott, J.A., Summerbell, R.C. & Malloch, D. Nature 398, 701–704 (1999).

    Article  CAS  Google Scholar 

  3. Bourtzis, K. & Miller, T.A. Insect Symbiosis (CRC Press, Boca Raton, Florida, USA, 2006).

  4. Haeder, S., Wirth, R., Herz, H. & Spiteller, D. Proc. Natl. Acad. Sci. USA 106, 4742–4746 (2009).

    Article  CAS  Google Scholar 

  5. Scott, J.J. et al. Science 322, 63 (2008).

    Article  CAS  Google Scholar 

  6. Kaltenpoth, M. et al. Int. J. Syst. Evol. Microbiol. 56, 1403–1411 (2006).

    Article  CAS  Google Scholar 

  7. Kaltenpoth, M., Goettler, W., Herzner, G. & Strohm, E. Curr. Biol. 15, 475–479 (2005).

    Article  CAS  Google Scholar 

  8. Strohm, E. & Linsenmair, K.E. Ecol. Entomol. 26, 198–203 (2001).

    Article  Google Scholar 

  9. Herzner, G. & Strohm, E. Curr. Biol. 17, R46–R47 (2007).

    Article  CAS  Google Scholar 

  10. Strohm, E. & Linsenmair, K.E. Zoology 98, 137–146 (1995).

    Google Scholar 

  11. Goettler, W., Kaltenpoth, M., Herzner, G. & Strohm, E. Arthropod Struct. Dev. 36, 1–9 (2007).

    Article  Google Scholar 

  12. Behal, V. Adv. Appl. Microbiol. 47, 113–156 (2000).

    Article  CAS  Google Scholar 

  13. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F. & Hopwood, D.A. Practical Streptomyces Genetics (John Innes Foundation, Norwich, UK, 2000).

  14. Shin, H.J. et al. J. Microbiol. Biotechnol. 17, 1403–1406 (2007).

    CAS  PubMed  Google Scholar 

  15. Tamura, S. et al. Agric. Biol. Chem. 27, 576–582 (1963).

    Article  CAS  Google Scholar 

  16. Takahashi, N. et al. Agric. Biol. Chem. 32, 1115–1122 (1968).

    CAS  Google Scholar 

  17. Matsumoto, M. et al. J. Antibiot. 40, 149–156 (1987).

    Article  CAS  Google Scholar 

  18. Hoelscher, D. et al. Plant J. 60, 907–918 (2009).

    Article  CAS  Google Scholar 

  19. Oh, D.C., Poulsen, M., Currie, C.R. & Clardy, J. Nat. Chem. Biol. 5, 391–393 (2009).

    Article  CAS  Google Scholar 

  20. Yim, G., Wang, H.M.H. & Davies, J. Philos Trans. R. Soc. Lond. B Biol. Sci. 362, 1195–1200 (2007).

    Article  CAS  Google Scholar 

  21. Clardy, J., Fischbach, M.A. & Currie, C.R. Curr. Biol. 19, R437–R441 (2009).

    Article  CAS  Google Scholar 

  22. Ugelvig, L.V. & Cremer, S. Curr. Biol. 17, 1967–1971 (2007).

    Article  CAS  Google Scholar 

  23. Hughes, D.P., Pierce, N.E. & Boomsma, J.J. Trends Ecol. Evol. 23, 672–677 (2008).

    Article  Google Scholar 

  24. Winston, L.G. & Chambers, H.F. in Hospital Medicine 2nd edn. (eds. Wachter, R.M., Goldman, L. & Hollander, H.) 623–632 (Lippincott, Williams & Wilkins, Philadelphia, 2005).

  25. Kaltenpoth, M. Trends Microbiol. 17, 529–535 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Max Planck Society (J.K., B.S., R.K.M. and A.S.), the German Research Foundation Deutsche Forschungsgemeinschaft (J.K., M.K. and E.S.), the Volkswagen Foundation (M.K.), the International Leibniz Research School for Microbial and Biomolecular Interactions (M.-G.S. and C.H.) and the Jena School for Microbial Communication (M.-G.S. and C.H.). We thank K. Roeser-Mueller, T. Engl and K. Angermeier (all at the University of Regensburg) for providing beewolf cocoons; J. Doubský (Max Planck Institute for Chemical Ecology) for the camalexin standard; and J. Seger for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.K., A.S. and M.K. conceived of the study. J.K. and A.S. isolated, identified and quantified the antibiotic substances and performed the imaging mass spectrometry. J.K., A.S., M.K. and E.S. wrote the manuscript. B.S. carried out the NMR experiments. M.-G.S. and C.H. performed the biological activity experiments. R.K.M. conducted the MS-MS experiments. M.K. and E.S. carried out the GC-MS experiments.

Corresponding authors

Correspondence to Martin Kaltenpoth or Aleš Svatoš.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 837 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroiss, J., Kaltenpoth, M., Schneider, B. et al. Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol 6, 261–263 (2010). https://doi.org/10.1038/nchembio.331

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.331

  • Springer Nature America, Inc.

This article is cited by

Navigation