Skip to main content
Log in

A nitrous acid biosynthetic pathway for diazo group formation in bacteria

  • Brief Communication
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

Although some diazo compounds have bioactivities of medicinal interest, little is known about diazo group formation in nature. Here we describe an unprecedented nitrous acid biosynthetic pathway responsible for the formation of a diazo group in the biosynthesis of the ortho-diazoquinone secondary metabolite cremeomycin in Streptomyces cremeus. This finding provides important insights into the biosynthetic pathways not only for diazo compounds but also for other naturally occurring compounds containing nitrogen-nitrogen bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Organization of the cremeomycin biosynthetic gene cluster and in vivo analysis of the cre pathway.
Figure 2: Proposed cremeomycin biosynthetic pathway and in vitro analysis of CreE and CreD.

Similar content being viewed by others

Accession codes

Primary accessions

DDBJ/GenBank/EMBL

References

  1. Doyle, M.P., McKervey, M.A. & Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds (Wiley, New York, 1998).

  2. Blair, L.M. & Sperry, J. J. Nat. Prod. 76, 794–812 (2013).

    Article  CAS  Google Scholar 

  3. Itŏ, S., Matsuya, T., Omura, S., Otani, M. & Nakagawa, A. J. Antibiot. (Tokyo) 23, 315–317 (1970).

    Article  Google Scholar 

  4. Nihei, Y. et al. J. Antibiot. (Tokyo) 46, 900–907 (1993).

    Article  CAS  Google Scholar 

  5. Nawrat, C.C. & Moody, C.J. Nat. Prod. Rep. 28, 1426–1444 (2011).

    Article  CAS  Google Scholar 

  6. Gould, S.J. Chem. Rev. 97, 2499–2510 (1997).

    Article  CAS  Google Scholar 

  7. Bergy, M.E. & Pyke, T.R. US patent 3,350,269 (1967).

  8. McGuire, J.N., Wilson, S.R. & Rinehart, K.L. J. Antibiot. (Tokyo) 48, 516–519 (1995).

    Article  CAS  Google Scholar 

  9. Suzuki, H., Ohnishi, Y., Furusho, Y., Sakuda, S. & Horinouchi, S. J. Biol. Chem. 281, 36944–36951 (2006).

    Article  CAS  Google Scholar 

  10. Smanski, M.J. et al. Proc. Natl. Acad. Sci. USA 108, 13498–13503 (2011).

    Article  CAS  Google Scholar 

  11. Wishart, D.S. et al. J. Biomol. NMR 6, 135–140 (1995).

    Article  CAS  Google Scholar 

  12. Zhang, J., Ma, W. & Tan, H. Eur. J. Biochem. 269, 6302–6307 (2002).

    Article  CAS  Google Scholar 

  13. Baxter, R.L., Hanley, A.B. & Chan, H.W.S. J. Chem. Soc. Chem. Commun. 12, 757–758 (1988).

    Article  Google Scholar 

  14. Winkler, R. & Hertweck, C. Angew. Chem. Int. Edn. 44, 4083–4087 (2005).

    Article  CAS  Google Scholar 

  15. Chanco, E., Choi, Y.S., Sun, N., Vu, M. & Zhao, H. Bioorg. Med. Chem. 22, 5569–5577 (2014).

    Article  CAS  Google Scholar 

  16. Li, N., Korboukh, V.K., Krebs, C. & Bollinger, J.M. Jr. Proc. Natl. Acad. Sci. USA 107, 15722–15727 (2010).

    Article  CAS  Google Scholar 

  17. Franke, J., Ishida, K., Ishida-Ito, M. & Hertweck, C. Angew. Chem. Int. Ed. 52, 8271–8275 (2013).

    Article  CAS  Google Scholar 

  18. Turner, N.J. Curr. Opin. Chem. Biol. 15, 234–240 (2011).

    Article  CAS  Google Scholar 

  19. Isobe, K. & Ohte, N. Microbes Environ. 29, 4–16 (2014).

    Article  Google Scholar 

  20. Winter, J.M., Jansma, A.L., Handel, T.M. & Moore, B.S. Angew. Chem. Int. Ed. 48, 767–770 (2009).

    Article  CAS  Google Scholar 

  21. Gould, S.J., Hong, S.T. & Carney, J.R. J. Antibiot. (Tokyo) 51, 50–57 (1998).

    Article  CAS  Google Scholar 

  22. Janso, J.E. et al. Tetrahedron 70, 4156–4164 (2014).

    Article  CAS  Google Scholar 

  23. Gao, J. et al. Angew. Chem. Int. Edn Engl. 53, 1334–1337 (2014).

    Article  CAS  Google Scholar 

  24. Le Goff, G. & Ouazzani, J. Bioorg. Med. Chem. 22, 6529–6544 (2014).

    Article  CAS  Google Scholar 

  25. Waldman, A.J., Pechersky, Y., Wang, P., Wang, J.X. & Balskus, E.P. ChemBioChem 16, 2172–2175 (2015).

    Article  CAS  Google Scholar 

  26. Onaka, H., Taniguchi, S., Ikeda, H., Igarashi, Y. & Furumai, T. J. Antibiot. (Tokyo) 56, 950–956 (2003).

    Article  CAS  Google Scholar 

  27. Noguchi, A., Kitamura, T., Onaka, H., Horinouchi, S. & Ohnishi, Y. Nat. Chem. Biol. 6, 641–643 (2010).

    Article  CAS  Google Scholar 

  28. Fu, J. et al. Nat. Biotechnol. 30, 440–446 (2012).

    Article  CAS  Google Scholar 

  29. Bibb, M.J., Janssen, G.R. & Ward, J.M. Gene 38, 215–226 (1985).

    Article  CAS  Google Scholar 

  30. Saltzman, B.E. Anal. Chem. 26, 1949–1955 (1954).

    Article  CAS  Google Scholar 

  31. Varley, L. & Moody, C. Synthesis 2008, 3601–3604 (2008).

    Article  Google Scholar 

  32. Lin, Y.-M. & Miller, M.J. J. Org. Chem. 64, 7451–7458 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Luzhetskyy (Helmholtz Institute for Pharmaceutical Research Saarland), H. Onaka (University of Tokyo) and Y. Zhang (Gene Bridges) for providing pKGLP2, pTOYAMAcos and GB05dir, respectively. This research was supported in part by a funding program for next-generation world-leading researchers from the Bureau of Science, Technology and Innovation Policy, Cabinet Office, Government of Japan (GS006 to Y.O.), Grant-in-Aid for Young Scientists (B) (25850048 to Y.K.) and NC-CARP project from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) (to Y.K. and Y.O.).

Author information

Authors and Affiliations

Authors

Contributions

Y.S. designed the study, performed experiments and wrote the manuscript. Y.K. designed the study, analyzed the data and wrote the manuscript. Y.O. directed the research, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Yasuo Ohnishi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1 and 2 and Supplementary Figures 1–26. (PDF 9033 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugai, Y., Katsuyama, Y. & Ohnishi, Y. A nitrous acid biosynthetic pathway for diazo group formation in bacteria. Nat Chem Biol 12, 73–75 (2016). https://doi.org/10.1038/nchembio.1991

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1991

  • Springer Nature America, Inc.

This article is cited by

Navigation