Skip to main content
Log in

An unsaturated aliphatic alcohol as a natural ligand for a mouse odorant receptor

  • Brief Communication
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

We report the identification of a physiological receptor-volatile pair in the mouse olfactory system. By activity-guided fractionation of exocrine gland extracts and subsequent chemical analysis, (Z)-5-tetradecen-1-ol was identified as a natural ligand for a mouse odorant receptor. (Z)-5-tetradecen-1-ol is excreted into male mouse urine under androgen control and enhances urine attractiveness to female mice. This report is to our knowledge the first to describe natural product–based deorphanization of an odorant receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Responses of Olfr288-expressing oocytes to exocrine gland extracts.
Figure 2: Purification and identification of ligand for Olfr288 in PPG extract.
Figure 3: Z5-14:OH is a PPG-derived male urinary volatile that enhances urine attractiveness to female mice.

Similar content being viewed by others

References

  1. Nei, M., Niimura, Y. & Nozawa, M. Nat. Rev. Genet. 9, 951–963 (2008).

    Article  CAS  Google Scholar 

  2. Touhara, K. & Vosshall, L.B. Annu. Rev. Physiol. 71, 307–332 (2009).

    Article  CAS  Google Scholar 

  3. Saito, H., Chi, Q., Zhuang, H., Matsunami, H. & Mainland, J.D. Sci. Signal. 2, ra9 (2009).

    Article  Google Scholar 

  4. Civelli, O. FEBS Lett. 430, 55–58 (1998).

    Article  CAS  Google Scholar 

  5. Touhara, K. Neurochem. Int. 51, 132–139 (2007).

    Article  CAS  Google Scholar 

  6. Uezono, Y. et al. Receptors Channels 1, 233–241 (1993).

    CAS  PubMed  Google Scholar 

  7. Katada, S., Nakagawa, T., Kataoka, H. & Touhara, K. Biochem. Biophys. Res. Commun. 305, 964–969 (2003).

    Article  CAS  Google Scholar 

  8. Abaffy, T., Matsunami, H. & Luetje, C.W. J. Neurochem. 97, 1506–1518 (2006).

    Article  CAS  Google Scholar 

  9. Saito, H., Kubota, M., Roberts, R.W., Chi, Q. & Matsunami, H. Cell 119, 679–691 (2004).

    Article  CAS  Google Scholar 

  10. Zhuang, H. & Matsunami, H. J. Biol. Chem. 282, 15284–15293 (2007).

    Article  CAS  Google Scholar 

  11. Von Dannecker, L.E., Mercadante, A.F. & Malnic, B. Proc. Natl. Acad. Sci. USA 103, 9310–9314 (2006).

    Article  CAS  Google Scholar 

  12. Yoshikawa, K. & Touhara, K. Chem. Senses 34, 15–23 (2009).

    Article  CAS  Google Scholar 

  13. Oka, Y. et al. Neuron 52, 857–869 (2006).

    Article  CAS  Google Scholar 

  14. Bozza, T., Feinstein, P., Zheng, C. & Mombaerts, P. J. Neurosci. 22, 3033–3043 (2002).

    Article  CAS  Google Scholar 

  15. Touhara, K. et al. Proc. Natl. Acad. Sci. USA 96, 4040–4045 (1999).

    Article  CAS  Google Scholar 

  16. Katada, S., Hirokawa, T., Oka, Y., Suwa, M. & Touhara, K. J. Neurosci. 25, 1806–1815 (2005).

    Article  CAS  Google Scholar 

  17. Tan, J., Savigner, A., Ma, M. & Luo, M. Neuron 65, 912–926 (2010).

    Article  CAS  Google Scholar 

  18. Buser, H.R., Arn, H., Guerin, P. & Rauscher, S. Anal. Chem. 55, 818–822 (1983).

    Article  CAS  Google Scholar 

  19. Bartelt, J.R., Jones, L.R. & Krick, P.T. J. Chem. Ecol. 9, 1343–1352 (1983).

    Article  CAS  Google Scholar 

  20. Evans, C.M. & Brain, F.P. Physiol. Behav. 21, 19–23 (1978).

    Article  CAS  Google Scholar 

  21. Mugford, R.A. & Nowell, N.W. Horm. Behav. 3, 39–46 (1972).

    Article  CAS  Google Scholar 

  22. Jemiolo, B., Alberts, J., Sochinski-Wiggins, S., Harvey, S. & Novotny, M. Anim. Behav. 33, 1114–1118 (1985).

    Article  Google Scholar 

  23. Lin, D.Y., Zhang, S.Z., Block, E. & Katz, L.C. Nature 434, 470–477 (2005).

    Article  CAS  Google Scholar 

  24. Horiike, M., Tanouchi, M. & Hirano, C. Agric. Biol. Chem. 44, 257–261 (1980).

    CAS  Google Scholar 

  25. Cork, A., Murlis, J. & Megenasa, T. J. Chem. Ecol. 15, 1349–1364 (1989).

    Article  CAS  Google Scholar 

  26. Krautwurst, D., Yau, K.W. & Reed, R.R. Cell 95, 917–926 (1998).

    Article  CAS  Google Scholar 

  27. Fukuda, N. et al. Eur. J. Neurosci. 27, 2665–2675 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (S) from the Ministry of Education, Culture, Sports, Science and Technology Japan (grant 24227003), a Grant-in-Aid for Scientific Research on Priority Areas from the Japan Society for the Promotion of Science (JSPS) (grant 18077001) and a research grant from the Astellas Foundation for Research on Metabolic Disorders to K.T. K.Y. was supported by a Grant-in-Aid for JSPS fellows. We thank T. Ando for Z8-14:OH (Tokyo University of Agriculture and Technology), and T. Kikusui and T. Hattori for advice on behavioral experiments.

Author information

Authors and Affiliations

Authors

Contributions

K.Y. performed experiments; H.N. identified δ-undecalactone as a synthetic ligand for Olfr288; N.M. generated the reagents; K.Y and K.T. designed the research, analyzed data and wrote the manuscript; H.W. and K.T. supervised the work.

Corresponding author

Correspondence to Kazushige Touhara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 3103 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshikawa, K., Nakagawa, H., Mori, N. et al. An unsaturated aliphatic alcohol as a natural ligand for a mouse odorant receptor. Nat Chem Biol 9, 160–162 (2013). https://doi.org/10.1038/nchembio.1164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1164

  • Springer Nature America, Inc.

This article is cited by

Navigation