Skip to main content
Log in

Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast

  • Brief Communication
  • Published:

From Nature Cell Biology

View current issue Submit your manuscript

Abstract

Fission yeast centromeres, like those of higher eukaryotes, are composed of repeated DNA structures and associated heterochromatin protein complexes, that have a critical function in the faithful segregation of chromosomes during cell division1,2,3. Cohesin protein complexes, which are essential for sister-chromatid cohesion and proper chromosome segregation, are enriched at centromeric repeats4,5. We have identified a functional and physical link between heterochromatin and cohesin. We find that the preferential localization of cohesins at the centromeric repeats is dependent on Swi6, a conserved heterochromatin protein that is required for proper kinetochore function. Cohesin is also enriched at the mating-type heterochromatic region in a manner that depends on Swi6 and is required to preserve the genomic integrity of this locus. We provide evidence that a cohesin subunit Psc3 interacts with Swi6 and its mouse homologue HP1. These data define a conserved function of Swi6/HP1 in recruitment of cohesin to heterochromatic regions, promoting the proper segregation of chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Cohesin is preferentially enriched at the heterochromatic regions and its localization requires functional Swi6.
Figure 2: Cohesins and Swi6 are required for proper kinetochore function.
Figure 3: Mutations in psc3 cause rearrangements at the mat locus.
Figure 4: Direct interaction between cohesin and Swi6/HP1.

Similar content being viewed by others

References

  1. Takahashi, K. et al. Mol. Biol. Cell 3, 819–835 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ekwall, K. et al. Science 269, 1429–1431 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Partridge, J. F., Borgstrom, B. & Allshire, R. C. Genes Dev. 14, 783–791 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tomonaga, T. et al. Genes Dev. 14, 2757–2770 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Watanabe, Y., Yokobayashi, S., Yamamoto, M. & Nurse, P. Nature 409, 359–363 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Blat, Y. & Kleckner, N. Cell 98, 249–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Megee, P. C., Mistrot, C., Guacci, V. & Koshland, D. Mol. Cell 4, 445–450 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Tanaka, T., Fuchs, J., Loidl, J. & Nasmyth, K. Nature Cell Biol. 2, 492–499 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Tanaka, T., Cosma, M. P., Wirth, K. & Nasmyth, K. Cell 98, 847–858 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Nakayama, J., Klar, A. J. & Grewal, S. I. Cell 101, 307–317 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Allshire, R. C., Nimmo, E. R., Ekwall, K., Javerzat, J. P. & Cranston, G. Genes Dev. 9, 218–233 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Miyazaki, W. Y. & Orr-Weaver, T. L. Annu. Rev. Genet. 28, 167–168 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Murphy, T. D. & Karpen, G. H. Cell 82, 599–609 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Science 292, 110–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Nature 410, 116–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Bannister, A. J. et al. Nature 410, 120–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Niwa, O., Matsumoto, T., Chikashige, Y. & Yanagida, M. EMBO J. 8, 3045–3052 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tatebayashi, K., Kato, J. & Ikeda, H. Genetics 148, 49–57 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Saitoh, S., Takahashi, K. & Yanagida, M. Cell 90, 131–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Beach, D. H. & Klar, A. J. EMBO J. 3, 603–610 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, G. et al. Mol. Cell. Biol. 20, 6970–6983 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gonzalez, C., Casal Jimenez, J., Ripoll, P. & Sunkel, C. E. Exp. Cell Res. 192, 10–15 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Hoque, M. T. & Ishikawa, F. J. Biol. Chem. 276, 5059–5067 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Hauf, S., Waizenegger, I. C. & Peters, J. M. Science 293, 1320–1323 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Bähler, J. et al. Yeast 14, 943–951 (1998).

    Article  PubMed  Google Scholar 

  26. Watanabe, Y. & Nurse, P. Nature 400, 461–464 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Shinozaki-Yabana, S., Watanabe, Y. & Yamamoto, M. Mol. Cell. Biol. 20, 1234–1242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Durfee, T. et al. Genes Dev. 7, 555–569 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. P. Cooper, K. Tatebayashi, R. C. Allshire, O. Niwa and M. Yanagida for providing strains and plasmids, and P. Nurse, J. P. Cooper, A. W. Murray and K. Nasmyth for valuable discussion. Y.W. thanks all the members of M. Yamamoto's laboratory for their support. This work was supported in part by grants from the Ministry of Education, Science, and Culture of Japan, and NIH grant 59772.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Watanabe.

Supplementary information

Supplementary information

The effect of psc3 and swi6 mutations on silencing of ura4+ inserted at the mating-type region or cen1. (PDF 995 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nonaka, N., Kitajima, T., Yokobayashi, S. et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat Cell Biol 4, 89–93 (2002). https://doi.org/10.1038/ncb739

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb739

  • Springer Nature Limited

This article is cited by

Navigation