Skip to main content

Advertisement

Log in

Activating ATR, the devil's in the dETAA1l

  • News & Views
  • Published:

From Nature Cell Biology

View current issue Submit your manuscript

An Erratum to this article was published on 29 November 2016

This article has been updated

Two studies now show that Ewing's tumour-associated antigen 1 (ETAA1) is recruited to sites of DNA replication stress through its interaction with replication protein A, where it stimulates the ATR kinase to promote efficient genome duplication. These findings provide exciting insight into the already very complex regulatory mechanism of the ATR activation cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Model of ETAA1 recruitment to stressed replication forks.
Figure 2: A hypothetical model for the bimodal activation of ATR.

Change history

  • 04 November 2016

    In the version of this News and Views originally published, there was an error in Fig. 2: the protein 'TOPBP1' should have been in contact with the protein 'ATR'. This has been corrected in the online versions of the News and Views.

References

  1. Jackson, S. P. & Bartek, J. Nature 461, 1071–1078 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Matsuoka, S. et al. Science 316, 1160–1166 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Stokes, M. P. et al. Proc. Natl Acad. Sci. USA 104, 19855–19860 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zeman, M. K. & Cimprich, K. A. Nat. Cell Biol. 16, 2–9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bass, T. E. et al. Nat. Cell Biol. 18, 1185–1195 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haahr, P. et al. Nat. Cell Biol. 18, 1196–1207 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Cortez, D., Guntuku, S., Qin, J. & Elledge, S. J. Science 294, 1713–1716 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Zou, L. & Elledge, S. J. Science 300, 1542–1548 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Cimprich, K. A. & Cortez, D. Nat. Rev. Mol. Cell Biol. 9, 616–627 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumagai, A., Lee, J., Yoo, H. Y. & Dunphy, W. G. Cell 124, 943–955 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Delacroix, S., Wagner, J. M., Kobayashi, M., Yamamoto, K. & Karnitz, L. M. Genes Dev. 21, 1472–1477 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee, J., Kumagai, A. & Dunphy, W. G. J. Biol. Chem. 282, 28036–28044 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Childs, E. J. et al. Nat. Genet. 47, 911–916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dungrawala, H. et al. Mol. Cell 59, 998–1010 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feng, S. et al. J. Biol. Chem. http://doi.org/brg9 (2016).

  16. Neelsen, K. J. & Lopes, M. Nat. Rev. Mol. Cell Biol. 16, 207–220 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Niedzwiedz.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niedzwiedz, W. Activating ATR, the devil's in the dETAA1l. Nat Cell Biol 18, 1120–1122 (2016). https://doi.org/10.1038/ncb3431

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3431

  • Springer Nature Limited

This article is cited by

Navigation