Skip to main content
Log in

Centriole biogenesis in multiciliated cells

  • News & Views
  • Published:

From Nature Cell Biology

View current issue Submit your manuscript

Centrioles duplicate only once per cell cycle in proliferating cells, whereas in multiciliated cells, hundreds of centrioles form almost simultaneously. The molecular control mechanisms that govern centriole amplification in multiciliated cells are largely unknown. Two studies highlight Deup1 and CCDC78 as key players in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Multiple types of centriole-dependent centriole duplication or amplification in human cycling cells.
Figure 2: Multiple pathways of ciliogenesis.

References

  1. Nigg, E. A. & Raff, J. W. Cell 139, 663–678 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Hagiwara, H., Ohwada, N. & Takata, K. Int. Rev. Cytol. 234, 101–141 (2004).

    Article  PubMed  Google Scholar 

  3. Zhao, H. et al. Nat. Cell Biol. 15, 1434–1444 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Klos Dehring, D. A. et al. Dev. Cell 27, 103–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Kleylein-Sohn J. et al. Dev. Cell 13, 190–202 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Strnad, P. et al. Dev. Cell 13, 203–213 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tang, C-J. C. et al. EMBO J. 30, 4790–4804 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin, Y.-N. et al. J. Cell Biol. 202, 211–219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sir, J. H. et al. Nat. Genet. 43, 1147–1153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang, C-J. C. et al. Nat. Cell Biol. 11, 825–831 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Cizmecioglu, O. et al. J. Cell Biol. 191, 731–739 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dzhindzhev, N. S. et al. Nature 467, 714–718 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Hatch, E. M., Kulukian, A., Holland, A. J., Cleveland, D. W. & Stearns, T. J. Cell Biol. 191, 721–729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sonnen, K. F., Gabryjonczyk, A.-M., Anselm, E., Stierhof, Y-D. & Nigg, E. A. J. Cell Sci. 126, 3223–3233 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Lin, Y-C. et al. EMBO J. 32, 1141–1154 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Comartin, D. et al. Curr. Biol. 23, 1360–1366 (2013).

    Article  CAS  Google Scholar 

  17. Kohlmaier, G. et al. Curr. Biol. 19, 1012–1018 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmidt, T. I. et al. Curr. Biol. 19, 1005–1011 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tang K. Tang.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, T. Centriole biogenesis in multiciliated cells. Nat Cell Biol 15, 1400–1402 (2013). https://doi.org/10.1038/ncb2892

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2892

  • Springer Nature Limited

This article is cited by

Navigation