Skip to main content
Log in

Linking HSCs to their youth

  • News & Views
  • Published:

From Nature Cell Biology

View current issue Submit your manuscript

An Erratum to this article was published on 02 September 2013

This article has been updated

Fetal haematopoietic stem cells (HSCs) self-renew extensively to build the blood system from scratch. The protein Lin28b negatively regulates the microRNA let-7 to keep levels of its target Hmga2 high, hence conferring high self-renewal potential to fetal HSCs. This regulatory circuit can be experimentally modulated to boost the lower self-renewal activity of quiescent adult HSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Fetal and adult HSCs have distinct programs suited to their developmental stage.
Figure 2: Modular regulation of the fetal HSC program.

Change history

  • 02 August 2013

    In the version of this News and Views originally published, there was an error in Fig. 1: the blue cell on the right should have been labelled ‘Adult HSC’, not ‘Fetal HSC’. This has been corrected in the HTML and PDF versions.

References

  1. Orkin S. H. & Zon, L. Cell 132, 631–644 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pietras, E. M., Warr, M. R. & Passegué, E. J. Cell. Biol. 195, 709–720 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harrison, D. E., Zhong, R., Jordan, C. T., Lemichka, I. R. & Astle, C. M. Exp. Hematol. 25, 293–297 (1997).

    CAS  PubMed  Google Scholar 

  4. Copley, M. R. et al. Nat. Cell Biol. 15, 916–925 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Kim, I., Saunders, T. L. & Morrison, S. J. Cell 130, 470–483 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mochizuki-Kashio, M. et al. Cell 130, 470–483 (2007).

    Article  Google Scholar 

  7. Magee, J. A., Ikenoue, T., Nakada, D., Lee, J. Y., Guan, K. L. & Morrison, S. J. Cell Stem Cell 11, 415–428 (2013).

    Article  Google Scholar 

  8. Shyh-Chang, N. & Daley, G. Q. Cell Stem Cell 12, 395–406 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pfannkuche, K., Summer, H., Li, O., Hescheler, J. & Droge, P. Stem Cell Rev. 5, 224–230 (2009).

    Article  CAS  Google Scholar 

  10. Yuan, J., Nguyen, C. K., Liu, X., Kanellopoulou, C. & Muljo, S. A. Science 335, 1195–1200 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ye, M. et al. Nat. Cell. Biol. 15, 385–394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shyh-Chang, N., Daley, G. Q. & Cantley, L. C. Development 14, 2535–2547 (2013).

    Article  Google Scholar 

  13. Tabuko, K. et al. Cell Stem Cell 12, 49–61 (2013).

    Article  Google Scholar 

  14. Warr, M. & Passegué, E. Cell Stem Cell 12, 1–3 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle Passegué.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietras, E., Passegué, E. Linking HSCs to their youth. Nat Cell Biol 15, 885–887 (2013). https://doi.org/10.1038/ncb2817

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2817

  • Springer Nature Limited

This article is cited by

Navigation