Skip to main content
Log in

Alternate fast and slow stepping of a heterodimeric kinesin molecule

  • Letter
  • Published:

From Nature Cell Biology

View current issue Submit your manuscript

Abstract

A conventional kinesin molecule travels continuously along a microtubule in discrete 8-nm steps. This processive movement is generally explained by models in which the two identical heads of a kinesin move in a 'hand-over-hand' manner1,2,3,4. Here, we show that a single heterodimeric kinesin molecule (in which one of the two heads is mutated in a nucleotide-binding site) exhibits fast and slow (with the dwell time at least 10 times longer than that of the fast step) 8-nm steps alternately, presumably corresponding to the displacement by the wild-type and mutant heads, respectively. Our results provide the first direct evidence for models in which the roles of the two heads alternate every 8-nm step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Time course of the displacement of a single heterodimeric kinesin molecule.
Figure 2: Dwell time analysis.

Similar content being viewed by others

References

  1. Howard, J. The mechanics of force generation by kinesin. Biophys J. 68, S245–S253; S253–S255 (1995).

    Google Scholar 

  2. Block, S.M., Goldstein, L.S. & Schnapp, B.J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990).

    Article  CAS  Google Scholar 

  3. Hackney, D.D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl Acad. Sci. USA 91, 6865–6869 (1994).

    Article  CAS  Google Scholar 

  4. Vale, R.D. & Milligan, R.A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  CAS  Google Scholar 

  5. Block, S.M. & Svoboda, K. Analysis of high resolution recordings of motor movement. Biophys J. 68, S2305–S2415 (1995).

    Google Scholar 

  6. Hua, W., Chung, J. & Gelles, J. Distinguishing inchworm and hand-over-hand processive kinesin movement by neck rotation measurements. Science 295, 844–848 (2002).

    Article  CAS  Google Scholar 

  7. Kaseda, K., Higuchi, H. & Hirose, K. Coordination of kinesin's two heads studied with mutant heterodimers. Proc. Natl Acad. Sci. USA 99, 16058–16063 (2002).

    Article  CAS  Google Scholar 

  8. Vale, R.D. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J. Cell Biol. 135, 291–302 (1996).

    Article  CAS  Google Scholar 

  9. Cross, R.A. et al. The conformational cycle of kinesin. Phil. Trans R Soc. Lond B 355, 459–464 (2000).

    Article  CAS  Google Scholar 

  10. Ma, Y.Z. & Taylor, E.W. Interacting head mechanism of microtubule-kinesin ATPase. J. Biol. Chem. 272, 724–730 (1997).

    Article  CAS  Google Scholar 

  11. Kojima, H., Muto, E., Higuchi, H. & Yanagida, T. Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys J. 73, 2012–2022 (1997).

    Article  CAS  Google Scholar 

  12. Forkey, J.N., Quinlan, M.E., Shaw, M.A., Corrie, J.E. & Goldman, Y.E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003).

    Article  CAS  Google Scholar 

  13. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    Article  CAS  Google Scholar 

  14. Nishiyama, M., Muto, E., Inoue, Y., Yanagida, T. & Higuchi, H. Substeps within the 8-nm step of the ATPase cycle of single kinesin molecules. Nature Cell Biol. 3, 425–428 (2001).

    Article  CAS  Google Scholar 

  15. Svoboda, K., Schmidt, C.F., Schnapp, B.J. & Block, S.M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    Article  CAS  Google Scholar 

  16. Svoboda, K. & Block, S.M. Force and velocity measured for single kinesin molecules. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).

    Article  CAS  Google Scholar 

  17. Higuchi, H., Muto, E., Inoue, Y. & Yanagida, T. Kinetics of force generation by single kinesin molecules activated by laser photolysis of caged ATP. Proc. Natl Acad. Sci. USA 94, 4395–4400 (1997).

    Article  CAS  Google Scholar 

  18. Visscher, K. & Block, S.M. Versatile optical traps with feedback control. Methods Enzymol. 298, 460–489 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Amos for comments on the manuscript. This work was aided by support from the Human Frontier Science Program (H.H. and K.H.) and the Japan Society for the Promotion of Science (K.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Hirose.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2 (PDF 96 kb)

Supplementary Information, Fig. S3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaseda, K., Higuchi, H. & Hirose, K. Alternate fast and slow stepping of a heterodimeric kinesin molecule. Nat Cell Biol 5, 1079–1082 (2003). https://doi.org/10.1038/ncb1067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1067

  • Springer Nature Limited

This article is cited by

Navigation