Skip to main content
Log in

Emergent behavior of growing knowledge about molecular interactions

  • Commentary
  • Published:

From Nature Biotechnology

View current issue Submit your manuscript

A billion nonredundant molecular interactions lie buried in the biomedical literature. A text-mining approach could help scientists better exploit this knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Hypothetical and actual modes of growth of the knowledge about molecular interactions.
Figure 2: 'Temperature' of a journal and its correlation with 'novelty' and impact factor.
Figure 3: Illustration of the existence of knowledge pockets: the facts produced in one subfield are largely invisible to other subfields.
Figure 4: Extrapolation-based estimate of the number of molecular relationships that can be extracted from the full-text research articles from the currently available biomedical and chemical journals, assuming that the currently available technology is used for information extraction.

References

  1. Friedman, C., Kra, P., Yu, H., Krauthammer, M. & Rzhetsky, A. Bioinformatics 17 (Suppl. 1), S74–82 (2001).

    Article  Google Scholar 

  2. Rzhetsky, A. et al. J. Biomed. Inform. 37, 43–53 (2004).

    Article  CAS  Google Scholar 

  3. Barabasi, A.L. et al. Physica A 311, 590–614 (2002).

    Article  Google Scholar 

  4. Guimera, R., Uzzi, B., Spiro, J. & Amaral, L.A. Science 308, 697–702 (2005).

    Article  CAS  Google Scholar 

  5. Barabasi, A.L. & Albert, R. Science 286, 509–512 (1999).

    Article  CAS  Google Scholar 

  6. http://www.isinet.com.

  7. Chen, C. Proc. Natl. Acad. Sci. USA 101 (Suppl. 1), 5303–5310 (2004).

    Article  CAS  Google Scholar 

  8. Price, D.J.D. Science 149, 510–515 (1965).

    Article  CAS  Google Scholar 

  9. Gilks, W.R., Richardson, S. & Spiegelhalter, D.J. (eds.) Markov Chain Monte Carlo In Practice (Chapman & Hall/CRC, New York, 1996).

    Google Scholar 

  10. Hastings, W.K. Biometrika 57, 97–109 (1970).

    Article  Google Scholar 

  11. Metropolis, S.C., Rosenbluth, A., Rosenbluth, M., Teller, A. & Teller, E. J. Chem. Phys. 21, 1087–1092 (1953).

    Article  CAS  Google Scholar 

  12. Krauthammer, M. et al. Bioinformatics 18 (Suppl. 1), S249–257 (2002).

    Article  Google Scholar 

  13. Draper, N.R. & Smith, H. Applied Regression Analysis (Wiley, New York, 1998).

    Book  Google Scholar 

Download references

Acknowledgements

We are grateful to Igor G. Feldman, Sidonie T. Jones, Lyn Dupré Oppenheim, James J. Russo, Rita Rzhetsky, Bengü Sezen and Kenneth C. Smith for numerous invaluable comments regarding earlier versions of this article, and to Harmen Bussemaker for the suggestion of naming the α-parameter 'temperature.' This study was supported by grants from the National Institutes of Health, the National Science Foundation, the Department of Energy and the Defense Advanced Research Projects Agency to A.R.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cokol, M., Iossifov, I., Weinreb, C. et al. Emergent behavior of growing knowledge about molecular interactions. Nat Biotechnol 23, 1243–1247 (2005). https://doi.org/10.1038/nbt1005-1243

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1005-1243

  • Springer Nature America, Inc.

This article is cited by

Navigation