Skip to main content
Log in

Viable but Non-Culturable Vibrio cholerae and Related Pathogens in the Environment: Implications for Release of Genetically Engineered Microorganisms

  • Research Paper
  • Published:
Bio/Technology Submit manuscript

Abstract

In a series of microcosm and field studies, we have observed that over time V. cholerae and related human pathogens enter a viable but non-culturable state. Direct viable counts by epifluorescent microscopy are consistently higher than corresponding plate counts. Thus, the assumption that microorganisms, including pathogens, “die-off” or “decay” in the marine environment must be re-evaluated, since stressed or nutrient starved cells are unable to grow and be enumerated by standard plate count methods. Furthermore, animal passage reveals pathogenicity persisting for such “non-viable”cells. Indirect immunofluorescent microscopy offers a more sensitive detection system for environmental sampling for human pathogens and therefore, a more valid estimation of population size. One implication of these findings for the release of genetically engineered organisms is that highly specific methods of detection and monitoring are required, with direct detection by fluorescent antibody the most reliable at the present time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, H.S., Roberts N., Singleton F.L., Atwell, R.W., Grimes D.J. and Colwell, R.R. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8: 313–323.

    Article  CAS  Google Scholar 

  2. Xu H.S., Roberts, N.C., Adams, L.B., West, P.A., Siebeling R.J., Huq, A., Huq M.I., Rahman, R. and Colwell R.R. 1984. An indirect fluorescent antibody staining procedure for detection of Vibrio cholerae serovar O1 cells in aquatic environmental samples. J. Microbiol. Methods 2: 221–231.

    Article  Google Scholar 

  3. Colwell R.R., Xu H.S., Roberts N., Siebeling S., Huq, A., West P., Huq, I., Aziz, K.M.S., Maneval, D., Brayton P., Roszak, D. and MacDonell, M. 1984. Ecology and systematics of Vibrio cholerae in endemic and non-endemic areas. U.S.-Japan Cholerae Conference, Washington, D.C.

  4. Kogure K, Simidu, U. and Taga, N. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25: 415–420.

    Article  CAS  Google Scholar 

  5. Hobbie J.E., Daley, R.J. and Jasper, S. 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225–1228.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Palmer, L.M., Baya, A.M., Grimes D.J. and Colwell R.R. 1984. Molecular genetic and phenotypic alteration of Escherichia coli in natural water microcosms containing toxic chemicals. FEMS Microbiol. Lett. 21: 169–173.

    Article  CAS  Google Scholar 

  7. Roszak D.B., Grimes, D.J. and Colwell, R.R. 1984. Viable but non-recoverable stage of Salmonella enteritidis in aquatic systems. Can. J. Microbiol. 30: 334–338.

    Article  CAS  Google Scholar 

  8. Spira W., Sack R.B. and Froehlich, J. 1981. Simple adult rabbit model for Vibrio cholerae and enterotoxigenic Escherichia coli diarrhea. Infect. Immun. 32: 739–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Macrina, F.L., Kopecko, D.J., Jones, K.R., Ayers, D.J. and McCowen, S.M. 1978. A multiple plasmid-containing Escherichia coli strain: convenient source of size reference plasmid molecules. Plasmid 1: 417–420.

    Article  CAS  Google Scholar 

  10. Baker R.M., Singleton F.L. and Hood, M.A. 1983. The effects of nutrient deprivation on Vibrio cholerae. Appl. Environ. Microbiol. 46: 930–941.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoppe, H.G. 1976. Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of autoradiography. Mar. Biol. (Berlin) 36: 291–302.

    Article  Google Scholar 

  12. Jones J.L. and Rhodes-Roberts M.E. 1981. The survival of marine bacteria under starvation conditions. J. Appl. Bacteriol. 50: 246–258.

    Article  Google Scholar 

  13. Mitchell, R. 1968. Factors affecting the decline of non-marine microorganisms in seawater. Water Res. 2: 534–543.

    Article  Google Scholar 

  14. Morita, R.Y. 1983. Starvation-survival of heterotrophs in the marine environment. Adv. Microb. Ecol. 6: 171–198.

    Article  Google Scholar 

  15. Novitsky, J.A. and Morita, R.Y. 1977. Survival of a psychrophilic marine Vibrio under long-term nutrient starvation. Appl. Environ. Microbiol. 46: 930–941.

    Google Scholar 

  16. Novitsky, J.A. and Morita, R.Y. 1978. Possible strategy for the survival of marine bacteria under starvation conditions. Mar. Biol. 48: 289–294.

    Article  Google Scholar 

  17. Stevenson, L.H. 1978. A case for bacterial dormancy in aquatic systems. Microb. Ecol. 4: 127–133.

    Article  Google Scholar 

  18. Tabor P.S., Ohwada, K. and Colwell, R.R. 1981. Filterable marine bacteria found in the deep sea: distribution, taxonomy and response to starvation. Microb. Ecol. 7: 67–83.

    Article  CAS  Google Scholar 

  19. Russek E. and Colwell, R.R. 1983. Computation of most probable numbers (MPN). Appl. Environ. Microbiol. 45: 1646–1650.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Monsur, K.A. 1961. A highly selective gelatin-taurocholate-tellurite medium for the isolation of Vibrio cholerae. Trans. R. Soc. Trop. Med. Hyg. 55: 440–442.

    Article  CAS  Google Scholar 

  21. Mach, P.A. and Grimes, D.J. 1982. R-Plasmid transfer in a wastewater treatment plant. Appl. Environ. Microbiol. 44: 1395–1403.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kado, C.I. and Liu, S.-T. 1981. Rapid procedure for detecting isolation of large and small plasmids. J. Bacteriol. 145: 1365–1373.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colwell, R., Brayton, P., Grimes, D. et al. Viable but Non-Culturable Vibrio cholerae and Related Pathogens in the Environment: Implications for Release of Genetically Engineered Microorganisms. Nat Biotechnol 3, 817–820 (1985). https://doi.org/10.1038/nbt0985-817

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0985-817

  • Springer Nature America, Inc.

This article is cited by

Navigation