Skip to main content
Log in

Bioconversion of N-Octane to Octanoic Acid by a Recombinant Escherichia Coli Cultured in a Two-Liquid Phase Bioreactor

  • Research Paper
  • Published:
Bio/Technology Submit manuscript

Abstract

The alk genes from the catabolic OCT plasmid of Pseudomonas oleovorans, which encode the enzymes involved in the oxidation of n-alkanes to carboxylic acids, were introduced into E. coli W3110. The resulting recombinant converts n-octane in a two-liquid phase medium into the corresponding alkanoate and excretes this compound into the aqueous phase. The rate of octanoic acid production by the recombinant E. coli is equal to or better than the alkane oxidation rate of P. oleovorans, suggesting that two-liquid phase fermentations with E. coli might have future industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chakrabarty, A.M. 1985. Genetically engineered microorganisms and their products in the oil service industries. TIBTECH 3: 32–38.

    Article  CAS  Google Scholar 

  2. Ballard, D.G.H., Courtis, A., Shirley, I.M. and Taylor, S.C. 1983. A biotech route to polyphenylene. J. Chem. Soc. Chem. Comm. 634: 954–955.

    Article  Google Scholar 

  3. Yi, Z.-H. and Rehm, H.J. 1982. Formation of α,ω-dodecanedioic acid and α,ω-tridecanedioic acid from differenet substrates by immobilized cells of a mutant of Candida tropicolis. Appl. Microbiol. Biotechnol. 16: 1–4.

    Article  CAS  Google Scholar 

  4. Baptist, J.N., Gholson, R.K. and Coon, M.J. 1963. Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation. Biochim. Biophys. Acta 69: 40–47.

    Article  CAS  Google Scholar 

  5. Nunn, W.D. 1986. A molecular view of fatty acid catabolism in E. coli. Microbiol. Rev. 50: 179–192.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Inoue, A. and Horikoshi, K. . 1989. A Pseudomonas thrives in high concentrations of toluene. Nature 338: 264–266.

    Article  CAS  Google Scholar 

  7. Rezessy, J.M., Huijberts, G.N.M. and de Bont, J. A. M. 1986. Potential of organic solvents in cultivating micro-organisms on toxic water-insoluble compounds. Laane, C., Tramper, J. and Lilly, M. D. (Eds.). Biocatalysis in Organic Media. Elsevier Science Publishers B. V., Amsterdam.

    Google Scholar 

  8. de Smet, M.J. 1982. Thesis, University of Groningen, The Netherlands.

  9. Van Heerikhuizen, H., Kwak, E., Van Bruggen, E.F.J. and Witholt, B. 1975. Characterization of a low density cytoplasmic membrane subfraction isolated from Escherichia coli. Biochim. Biophys. Acta 413: 177–191.

    Article  CAS  Google Scholar 

  10. Lounatmaa, K. and Nanninga, N. 1976. Effect of polymyxin on the outer membrane of Salmonella typhimuriumn freeze-fracture studies. J. Bacteriol. 128: 665–667.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Laane, C., Boeren, S., Vos, K. and Veeger, C. 1987. Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng. 30: 81–87.

    Article  CAS  Google Scholar 

  12. Overath, P., Pauli, G. and Schairer, H.U. 1969. Fatty acid degradation in Escherichia coli. Eur. J. Biochem. 7: 559–574.

    Article  CAS  Google Scholar 

  13. Eggink, G., Lageveen, R.G., Altenburg, B. and Witholt, B. 1987. Gontroiled and functional expression of P. oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli. J. Biol. Chem. 262: 17712–17718.

    CAS  PubMed  Google Scholar 

  14. Mason, C.A. and Bailey, J.E. 1989. Effects of plasmid presence on growth and enzyme activity of Escherichia coli DH5 α. Appl. Microbiol. Biotechnol. 32: 54–60.

    CAS  Google Scholar 

  15. de Smet, M. J., Kingma, J., Wynberg, H. and Witholt, B. 1983. Pseudomonas oleovorans as a tool in bioconversions of hydrocarbons: growth, morphology and conversion characteristics in different two-phase systems. Enz. Microb. Technol. 5: 352–360.

    Article  CAS  Google Scholar 

  16. de Smet, M. J., Kingma, J. and Witholt, B. 1978. The effect of toluene on the structure and permeability of the outer and the cytoplasmic membranes of Escherichia coli. Biochim. Biophys. Acta 506: 64–80.

    Article  CAS  Google Scholar 

  17. Witholt, B., de Smet, M.J., Kingma, J., Van Beilen, J., Kok, M., Lageveen, R. G. and Eggink, G. 1990. Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. TIBTECH 7: 46–52.

    Article  Google Scholar 

  18. Bachman, B.J. 1987. Derivaties and genotypes of some mutant derivatives of Escherichia coli K-12. In: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2. Neidhardt, F. C., Ingraham, J. L., Low, K. B., Magasanik, B., Schaechter, M., and Umbarger, H. E. (Eds.) American Society for Microbiology, Washington, D.C.

    Google Scholar 

  19. Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G. and Witholt, B. 1988. Formation of polyesters by P. oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-hydroxyalkenoates. Appl. Environ. Microbiol. 54: 2924–2932.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Manniatis, T., Fritsch, E.F. and Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Lab., Cold Spring Harbor, NY.

    Google Scholar 

  21. Witholt, B. 1972. Method for isolating mutants overproducing nicotinamide adenine dinucleotide and its precursors. J. Bacteriol. 109: 350–364.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rekker, R.F. and de Kort, H. M. 1979. The hydrophobic fragmental constant. Eur. J. Med. Chem. 14: 479–488.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Favre-Bulle, O., Schouten, T., Kingma, J. et al. Bioconversion of N-Octane to Octanoic Acid by a Recombinant Escherichia Coli Cultured in a Two-Liquid Phase Bioreactor. Nat Biotechnol 9, 367–371 (1991). https://doi.org/10.1038/nbt0491-367

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0491-367

  • Springer Nature America, Inc.

This article is cited by

Navigation