Skip to main content
Log in

Lysis, lysogeny and virus–microbe ratios

  • Brief Communications Arising
  • Published:

From Nature

View current issue Submit your manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Examining putative relationships between three lysogeny indicators and log-transformed microbial cell density within coral reefs.
Figure 2: Virus density is nonlinearly related to microbial cell density in several dynamic models, with declining VMR as a function of increasing microbial cell density.

References

  1. Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 466–470 (2016)

    Article  CAS  ADS  Google Scholar 

  2. Bergh, O., Børsheim, K. Y., Bratbak, G. & Heldal, M. High abundance of viruses found in aquatic environments. Nature 340, 467–468 (1989)

    Article  CAS  ADS  Google Scholar 

  3. Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000)

    Article  CAS  Google Scholar 

  4. Weinbauer, M. G. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28, 127–181 (2004)

    Article  CAS  Google Scholar 

  5. Danovaro, R. et al. Marine viruses and global climate change. FEMS Microbiol. Rev. 35, 993–1034 (2011)

    Article  CAS  Google Scholar 

  6. Wigington, C. H. et al. Re-examination of the relationship between marine virus and microbial cell abundances. Nat. Microbiol. 1, 15024 (2016)

    Article  CAS  Google Scholar 

  7. Paul, J. H. & Weinbauer, M. in Manual of Aquatic Viral Ecology (eds Wilhelm, S. W. et al.) 30–33 (ASLO, 2010)

  8. Payet, J. P. & Suttle, C. A. To kill or not to kill: the balance between lytic and lysogenic viral infections is driven by trophic status. Limnol. Oceanogr. 58, 465–474 (2013)

    Article  ADS  Google Scholar 

  9. Brum, J. R., Hurwitz, B. L., Schofield, O., Ducklow, H. W. & Sullivan, M. B. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 10, 437–449 (2016)

    Article  CAS  Google Scholar 

  10. Simpson, E. H. The interpretation of interaction in contingency tables. J. R. Stat. Soc. B 13, 248–251 (1950)

    Google Scholar 

  11. Weitz, J. S. & Dushoff, J. Alternative stable states in host-phage dynamics. Theor. Ecol. 1, 13–19 (2008)

    Google Scholar 

  12. Thingstad, T. F., Våge, S., Storesund, J. E., Sandaa, R. A. & Giske, J. A theoretical analysis of how strain-specific viruses can control microbial species diversity. Proc. Natl Acad. Sci. USA 111, 7813–7818 (2014)

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.S.W. wrote the paper with input from S.J.B., J.R.B., B.B.C. and J.D. J.S.W., S.J.B. and B.B.C. performed model simulations and analysis. J.S.W., S.J.B. and B.B.C. performed statistical analysis. J.S.W., S.J.B., J.R.B., B.B.C. and J.D. analysed model and empirical data.

Corresponding author

Correspondence to Joshua S. Weitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data and Supplementary Tables 1-3. (PDF 122 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weitz, J., Beckett, S., Brum, J. et al. Lysis, lysogeny and virus–microbe ratios. Nature 549, E1–E3 (2017). https://doi.org/10.1038/nature23295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature23295

  • Springer Nature Limited

This article is cited by

Navigation