Skip to main content
Log in

Tidal dissipation and the strength of the Earth’s internal magnetic field

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Magnetic fields at the Earth’s surface represent only a fraction of the field inside the core1. The strength and structure of the internal field are poorly known2,3,4,5, yet the details are important for our understanding of the geodynamo. Here I obtain an indirect estimate for the field strength from measurements of tidal dissipation. Tidally driven flow in the Earth’s liquid core develops internal shear layers, which distort the internal magnetic field and generate electric currents. Ohmic losses damp the tidal motions and produce detectable signatures in the Earth’s nutations. Previously reported evidence of anomalous dissipation in nutations3,6 can be explained with a core-averaged field of 2.5 mT, eliminating the need for high fluid viscosity6 or a stronger magnetic field at the inner-core boundary3. Estimates for the internal field constrain the power required for the geodynamo7,8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Structure of flow and magnetic field perturbation in the fluid core when the inner core tilts out of alignment with the mantle.
Figure 2: Ohmic dissipation in the core due to internal shear layers.
Figure 3: Predicted dissipation as a function of magnetic field strength.

Similar content being viewed by others

References

  1. Aubert, J., Labrosse, S. & Poitou, C. Modelling the palaeo-evolution of the geodynamo. Geophys. J. Int. 179, 1414–1428 (2009)

    Article  ADS  Google Scholar 

  2. Zatman, S. & Bloxham, J. Torsional oscillations and the magnetic field within the Earth’s core. Nature 388, 760–763 (1997)

    Article  ADS  Google Scholar 

  3. Mathews, P. M., Herring, T. A. & Buffett, B. A. Modeling of nutation and precession: new nutation series for nonrigid Earth and insights into the Earth’s interior. J. Geophys. Res. 107, 2068 (2002)

    Article  ADS  Google Scholar 

  4. Buffett, B. A., Mound, J. & Jackson, A. Inversion of torsional oscillations for the structure and dynamics of Earth’s core. Geophys. J. Int. 177, 878–890 (2009)

    Article  ADS  Google Scholar 

  5. Gillet, N., Jault, D., Canet, E. & Fournier, A. Fast torsional waves and strong magnetic field within the Earth’s core. Nature 465, 74–77 (2010)

    Article  ADS  CAS  Google Scholar 

  6. Koot, L., Dumberry, M., Rivoldini, A., de Viron, O. & Dehant, V. Constraints on the coupling at the core-mantle and inner-core boundaries inferred from nutation observations. Geophys. J. Int. 182, 1279–1294 (2010)

    Article  ADS  Google Scholar 

  7. Jackson, A. & Livermore, P. On ohmic heating in the Earth’s core: nutation constraints. Geophys. J. Int. 177, 367–382 (2009)

    Article  ADS  Google Scholar 

  8. Christensen, U. R. & Tilgner, A. Power requirements of the geodynamo from ohmic losses in numerical and laboratory dynamos. Nature 429, 169–171 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Poincaré, H. Sur la precession des corps deformables. Bull. Astron. 27, 321–356 (1910)

    MathSciNet  MATH  Google Scholar 

  10. de Wijs, G. A. et al. The viscosity of liquid iron at the physical conditions of the Earth’s core. Nature 392, 805–807 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Dobson, D. P. Self-diffusion in liquid Fe at high pressure. Phys. Earth Planet. Inter. 130, 271–284 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Hollerbach, R. & Kerswell, R. R. Oscillatory internal shear layers in rotating and precessing flows. J. Fluid Mech. 298, 327–339 (1995)

    Article  ADS  Google Scholar 

  13. Tilgner, A. Driven inertial oscillations in spherical shells. Phys. Rev. E 59, 1789–1794 (1999)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  14. Rieutord, M. & Valdettaro, L. Inertial waves in a rotating spherical shell. J. Fluid Mech. 341, 77–99 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  15. Walton, I. C. Viscous shear layers in an oscillating rotating fluid. Proc. R. Soc. Lond. A 344, 101–110 (1975)

    Article  ADS  Google Scholar 

  16. Kerswell, R. R. On the internal shear layers spawned by the critical regions in oscillatory Ekman boundary layers. J. Fluid Mech. 298, 311–325 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  17. Wahr, J. M. & Bergen, Z. The effects of mantle anelasticity on nutations, Earth tides and tidal variations in the rotation rate. Geophys. J. R. Astron. Soc. 87, 633–668 (1986)

    Article  ADS  Google Scholar 

  18. Desai, S. & Wahr, J. M. Empirical ocean tide models estimated TOPEX/Poseidon altimetry. J. Geophys. Res. 100, 25205–25228 (1995)

    Article  ADS  Google Scholar 

  19. Mathews, P. M., Buffett, B. A., Herring, T. A. & Shapiro, I. I. Forced nutations of the Earth: influence of inner core dynamics, 1.Theory. J. Geophys. Res. 96, 8219–8242 (1991)

    Article  ADS  Google Scholar 

  20. Buffett, B. A., Mathews, P. M. & Herring, T. A. Modeling of nutation and precession: effects of electromagnetic coupling. J. Geophys. Res. 107, 2070 (2002)

    Article  ADS  Google Scholar 

  21. Christensen, U. R. & Aubert, J. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 166, 97–114 (2006)

    Article  ADS  Google Scholar 

  22. Starchenko, S. V. & Jones, C. A. Typical velocities and magnetic field strengths in planetary interiors. Icarus 157, 426–435 (2002)

    Article  ADS  Google Scholar 

  23. Sovers, O. J., Fanselow, J. L. & Jacobs, C. S. Astrometry and geodesy with radio interferometry: experiments, models, results. Rev. Mod. Phys. 70, 1393–1454 (1998)

    Article  ADS  Google Scholar 

  24. Kuang, W. & Bloxham, J. Numerical modeling of magnetohydrodynamic convection in a rapidly rotating spherical shell: weak and strong field dynamo action. J. Comput. Phys. 153, 51–81 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  25. Saad, Y. & Schultz, M. H. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MathSciNet  Google Scholar 

  26. Tilgner, A. in Treatise on Geophysics Vol. 8 (ed. Schubert, G.) 207–243 (Elsevier, 2007)

    Book  Google Scholar 

  27. Mathew, P. M., Buffett, B. A., Herring, T. A. & Shapiro, I. I. Forced nutations of the Earth: influence of inner core dynamics, 2. Results. J. Geophys. Res. 96, 8219–8242 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Buffett.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text comprising: Width of the Shear Layers and Influence of Electromagnetic Force on Inertial Waves. The file also contains Supplementary Figures 1-2 with legends and additional references. (PDF 154 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buffett, B. Tidal dissipation and the strength of the Earth’s internal magnetic field. Nature 468, 952–954 (2010). https://doi.org/10.1038/nature09643

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09643

  • Springer Nature Limited

This article is cited by

Navigation