Skip to main content
Log in

Biological scaling

Does the exception prove the rule?

  • Brief Communications Arising
  • Published:

From Nature

View current issue Submit your manuscript

This article has been updated

Abstract

Arising from: P. B. Reich, M. G. Tjoelker, J.-L. Machado & J. Oleksyn Nature 439, 457–461 (2006)10.1038/nature04282; Reich et al. reply, Hedin reply

Reich et al.1 report that the whole-plant respiration rate, R, in seedlings scales linearly with plant mass, M, so that when θ ≈ 1, in which cR is the scaling normalization and θ is the scaling exponent. They also state that because nitrogen concentration (N) is correlated with cR, variation in N is a better predictor of R than M would be. Reich et al. and Hedin2 incorrectly claim that these “universal” findings question the central tenet of metabolic scaling theory, which they interpret as predicting θ = ¾, irrespective of the size of the plant. Here we show that these conclusions misrepresent metabolic scaling theory and that their results are actually consistent with this theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Metabolic scaling theory (MST) predicts a coordinated shift in allometric exponents.
Figure 2: Plant carbon growth.

Similar content being viewed by others

Change history

  • 09 March 2007

    Reference numbers changed from original document. * Trend in legend for figure 2 is G → 0, not G → 1 as originally published.

References

  1. Reich, P. B., Tjoelker, M. G., Machado, J.-L. & Oleksyn, J. Nature 439, 457–461 (2006).

    Article  ADS  CAS  Google Scholar 

  2. Hedin, L. O. Nature 439, 399–400 (2006).

    Article  ADS  CAS  Google Scholar 

  3. West, G. B., Brown, J. H. & Enquist, B. J. Nature 400, 664–667 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Sack, L., Marañón, T., Grubb, P. J., Enquist, B. J. & Niklas, K. J. Science 296, 1923 (2002).

    Article  Google Scholar 

  5. Niklas, K. J. & Enquist, B. J. Proc. Natl Acad. Sci. USA 98, 2922–2927 (2001).

    Article  ADS  CAS  Google Scholar 

  6. Price, C. A. & Enquist, B. J. Ecology (in the press).

  7. Enquist, B. J. Tree Physiol. 22, 1045–1064 (2002).

    Article  Google Scholar 

  8. Hemmingsen, A. M. Rep. Steno Memorial Hosp. Nord. Insulinlab. 4, 7–51 (1950).

    Google Scholar 

  9. Gifford, R. M. Funct. Plant Biol. 30, 171–186 (2003).

    Article  Google Scholar 

  10. Wright, I. J. et al. . Nature 428, 821–827 (2004).

    Article  ADS  CAS  Google Scholar 

  11. Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Am. Nat. 168, E103–E122 (2006).

    Article  Google Scholar 

  12. Enquist, B. J. & Niklas, K. J. Science 295, 1517–1520 (2002).

    Article  ADS  CAS  Google Scholar 

  13. Kerkhoff, A. J., Enquist, B. J., Elser, J. J. & Fagan, W. F. Glob. Ecol. Biogeogr. 14, 585–598 (2005).

    Article  Google Scholar 

  14. Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Nature 417, 70–73 (2002).

    Article  ADS  CAS  Google Scholar 

  15. Niklas, K. J. & Spatz, H. C. Proc. Natl Acad. Sci. USA 101, 15661–15663 (2004).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Enquist.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enquist, B., Allen, A., Brown, J. et al. Does the exception prove the rule?. Nature 445, E9–E10 (2007). https://doi.org/10.1038/nature05548

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05548

  • Springer Nature Limited

This article is cited by

Navigation