Skip to main content
Log in

Controlled vesicle deformation and lysis by single oscillating bubbles

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The ability of collapsing (cavitating) bubbles to focus and concentrate energy, forces and stresses is at the root of phenomena such as cavitation damage, sonochemistry or sonoluminescence1,2. In a biomedical context, ultrasound-driven microbubbles have been used to enhance contrast in ultrasonic images3. The observation of bubble-enhanced sonoporation4,5,6—acoustically induced rupture of membranes—has also opened up intriguing possibilities for the therapeutic application of sonoporation as an alternative to cell-wall permeation techniques such as electroporation7 and particle guns8. However, these pioneering experiments have not been able to pinpoint the mechanism by which the violently collapsing bubble opens pores or larger holes in membranes. Here we present an experiment in which gentle (linear) bubble oscillations are sufficient to achieve rupture of lipid membranes. In this regime, the bubble dynamics and the ensuing sonoporation can be accurately controlled. The use of microbubbles as focusing agents makes acoustics on the micrometre scale (microacoustics) a viable tool, with possible applications in cell manipulation and cell-wall permeation as well as in microfluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Vesicle motion near an oscillating bubble.
Figure 2: Modelling of the streaming flow.
Figure 3: Vesicle rupture.

Similar content being viewed by others

References

  1. Suslick, K. S. Sonochemistry. Science 247, 1439–1445 (1990)

    Article  ADS  CAS  Google Scholar 

  2. Hilgenfeldt, S., Grossmann, S. & Lohse, D. A simple explanation of light emission in sonoluminescence. Nature 398, 402–405 (1999)

    Article  ADS  CAS  Google Scholar 

  3. Chang, D. C., Chassey, B. M., Saunders, J. A. & Sowers, A. E. (eds) Advances in Echo Imaging Using Contrast Enhancement (Kluwer Academic, Dordrecht, 1993)

  4. Tachibana, K., Uchida, T., Ogawa, K., Yamashita, N. & Tamura, K. Induction of cell membrane porosity by ultrasound. Lancet 353, 1409 (1999)

    Article  CAS  Google Scholar 

  5. Miller, D. L. & Quddus, J. Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast-agent gas bodies. Ultrasound Med. Biol. 26, 661–667 (2000)

    Article  CAS  Google Scholar 

  6. Ward, M., Wu, J. & Chiu, J.-F. Experimental study of the effects of Optison® concentration on sonoporation in vitro. Ultrasound Med. Biol. 26, 1169–1175 (2000)

    Article  CAS  Google Scholar 

  7. Chang, D. C., Chassey, B. M., Saunders, J. A. & Sowers, A. E. (eds) Guide to Electroporation and Electrofusion (Academic, New York, 1992)

  8. Seki, M., Komeda, Y., Iida, A., Yamada, Y. & Morikawa, H. Transient expression of beta-glucuronidase in Arabidopsis thaliana leaves and roots and Brassica napus stems using a pneumatic particle gun. Plant Mol. Biol. 17, 259–263 (1991)

    Article  CAS  Google Scholar 

  9. Prosperetti, A. A new mechanism for sonoluminescence. J. Acoust. Soc. Am. 101, 2003–2007 (1997)

    Article  ADS  Google Scholar 

  10. Popinet, S. & Zaleski, S. A front-tracking algorithm for accurate representation of surface tension. Int. J. Num. Meth. Fluids 30, 775–793 (1999)

    Article  Google Scholar 

  11. Brujan, E.-A., Nahen, K., Schmidt, P. & Vogel, A. Dynamics of laser-induced cavitation bubbles near an elastic boundary. J. Fluid Mech. 433, 251–281 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Wang, Z. Q., Pecha, R., Gompf, B. & Eisenmenger, W. Single bubble sonoluminescence: Investigations of the emitted pressure wave with a fiber optic probe hydrophone. Phys. Rev. E 59, 1777–1780 (1999)

    Article  ADS  CAS  Google Scholar 

  13. Hilgenfeldt, S., Lohse, D. & Zomack, M. Sound scattering and localized heat deposition of pulse-driven microbubbles. J. Acoust. Soc. Am. 107, 3530–3539 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Greenleaf, W. J., Bolander, M. E., Sarkar, G., Goldring, M. B. & Greenleaf, J. F. Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound Med. Biol. 24, 587–595 (1998)

    Article  CAS  Google Scholar 

  15. Rawicz, W., Olbrich, K., McIntosh, T., Needham, D. & Evans, E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339 (2000)

    Article  CAS  Google Scholar 

  16. Boal, D. Mechanics of the Cell (Cambridge Univ. Press, Cambridge, UK, 2002)

    Google Scholar 

  17. Dimitrov, D. S. & Anguelova, M. I. Lipid swelling and liposome formation on solid surfaces. Prog. Colloid Polym. Sci. 73, 48–56 (1987)

    Article  CAS  Google Scholar 

  18. Plesset, M. S. & Prosperetti, A. Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145–185 (1977)

    Article  ADS  CAS  Google Scholar 

  19. Leighton, T. G. The Acoustic Bubble (Academic, London, 1994)

    Google Scholar 

  20. Lighthill, J. Acoustic streaming. J. Sound Vib. 61, 391–418 (1978)

    Article  ADS  Google Scholar 

  21. Miller, D. L., Nyborg, W. L. & Whitcomb, C. C. Platelet aggregation induced by ultrasound under specialized conditions. Science 205, 505–507 (1979)

    Article  ADS  CAS  Google Scholar 

  22. Miller, D. L. Particle gathering and microstreaming near ultrasonically activated micropores. J. Acoust. Soc. Am. 84, 1378–1387 (1988)

    Article  ADS  CAS  Google Scholar 

  23. Elder, S. A. Cavitation microstreaming. J. Acoust. Soc. Am. 31, 54–64 (1958)

    Article  ADS  Google Scholar 

  24. Davidson, B. J. & Riley, N. Cavitation microstreaming. J. Sound Vib. 15, 217–233 (1971)

    Article  ADS  Google Scholar 

  25. Rooney, J. A. Hemolysis near an ultrasonically pulsating gas bubble. Science 169, 869–871 (1970)

    Article  ADS  CAS  Google Scholar 

  26. Longuet-Higgins, M. S. Viscous streaming from an oscillating spherical bubble. Proc. R. Soc. Lond. A 454, 725–742 (1998)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  27. Blake, J. R. & Chwang, A. T. Fundamental singularities of viscous flow. J. Eng. Math. 8, 23–29 (1974)

    Article  Google Scholar 

  28. Pozrikidis, C. Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge Univ. Press, Cambridge, UK, 1992)

    Book  Google Scholar 

  29. Riley, N. On a sphere oscillating in a viscous fluid. Q. J. Mech. Appl. Math. 19, 461–472 (1966)

    Article  Google Scholar 

  30. Seifert, U. Fluid membranes in hydrodynamic flow fields: Formalism and an application to fluctuating quasispherical vesicles in shear flow. Eur. Phys. J. B 8, 405–415 (1999)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Lohse for his support and insight, and A. van den Berg and H. Gardeniers for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Marmottant.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marmottant, P., Hilgenfeldt, S. Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423, 153–156 (2003). https://doi.org/10.1038/nature01613

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01613

  • Springer Nature Limited

This article is cited by

Navigation