Skip to main content
Log in

A colloidal model system with an interaction tunable from hard sphere to soft and dipolar

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Monodisperse colloidal suspensions of micrometre-sized spheres are playing an increasingly important role as model systems to study, in real space, a variety of phenomena in condensed matter physics—such as glass transitions and crystal nucleation1,2,3,4. But to date, no quantitative real-space studies have been performed on crystal melting, or have investigated systems with long-range repulsive potentials. Here we demonstrate a charge- and sterically stabilized colloidal suspension—poly(methyl methacrylate) spheres in a mixture of cycloheptyl (or cyclohexyl) bromide and decalin—where both the repulsive range and the anisotropy of the interparticle interaction potential can be controlled. This combination of two independent tuning parameters gives rise to a rich phase behaviour, with several unusual colloidal (liquid) crystalline phases, which we explore in real space by confocal microscopy. The softness of the interaction is tuned in this colloidal suspension by varying the solvent salt concentration; the anisotropic (dipolar) contribution to the interaction potential can be independently controlled with an external electric field ranging from a small perturbation to the point where it completely determines the phase behaviour. We also demonstrate that the electric field can be used as a pseudo-thermodynamic temperature switch to enable real-space studies of melting transitions. We expect studies of this colloidal model system to contribute to our understanding of, for example, electro- and magneto-rheological fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Tunability of interactions.
Figure 2: Influence of softness on the phase behaviour.
Figure 3: Volume fraction–electric field phase diagram.
Figure 4: Melting of a b.c.t. crystal into a string fluid is not the reverse of crystallization of the string fluid.

Similar content being viewed by others

References

  1. Grier, D. G. & Murray, C. A. The microscopic dynamics of freezing in supercooled colloidal fluids. J. Chem. Phys. 100, 9088–9095 (1994)

    Article  ADS  CAS  Google Scholar 

  2. van Blaaderen, A. & Wiltzius, P. Real-space structure of colloidal hard-sphere glasses. Science 270, 1177–1179 (1995)

    Article  ADS  CAS  Google Scholar 

  3. Kegel, W. K. & van Blaaderen, A. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287, 290–293 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Gasser, U., Weeks, E. R., Schofield, A., Pusey, P. N. & Weitz, D. A. Real-space imaging of nucleation and growth in colloidal crystallization. Science 292, 258–262 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Antl, L., Goodwin, J., Hill, R., Ottewill, R. & Waters, J. The preparation of poly(methyl methacrylate) latices in non-aqueous media. Colloids Surf. 17, 67–78 (1986)

    Article  CAS  Google Scholar 

  6. van Blaaderen, A. & Vrij, A. Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir 8, 2921–2931 (1992)

    Article  CAS  Google Scholar 

  7. Dhont, J. K. G., Smits, C. & Lekkerkerker, H. N. W. A time resolved static light-scattering study on nucleation and crystallization in a colloidal system. J. Colloid Interf. Sci. 152, 386–401 (1992)

    Article  ADS  CAS  Google Scholar 

  8. Russel, W. B., Chaikin, P. M., Zhu, J., Meyer, W. V. & Rogers, R. Dendritic growth of hard sphere crystals. Langmuir 13, 3871–3881 (1997)

    Article  CAS  Google Scholar 

  9. Palberg, T. Crystallization kinetics of repulsive colloidal spheres. J. Phys. Condens. Matter 11, R323–R360 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Harland, J. L. & vanMegen, W. Crystallization kinetics of suspensions of hard colloidal spheres. Phys. Rev. E 55, 3054–3067 (1997)

    Article  ADS  CAS  Google Scholar 

  11. Gast, A. P. & Russel, W. B. Simple ordering in complex fluids—Colloidal particles suspended in solution provide intriguing models for studying phase transitions. Phys. Today 51, 24–30 (1998)

    Article  ADS  CAS  Google Scholar 

  12. Pham, K. N. et al. Multiple glassy states in a simple model system. Science 269, 104–106 (2002)

    Article  ADS  Google Scholar 

  13. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Pusey, P. N. & van Megen, W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986)

    Article  ADS  CAS  Google Scholar 

  15. Russel, W. B., Schowalter, W. R. & Saville, D. A. Colloidal Dispersions (Cambridge Univ. Press, Cambridge, 1999)

    MATH  Google Scholar 

  16. Parthasarathy, M. & Klingenberg, D. J. Electrorheology: mechanisms and models. Mater. Sci. Eng. R17, 57–103 (1996)

    Article  CAS  Google Scholar 

  17. Tao, R. & Jiang, Q. Simulation of structure formation in an electrorheological fluid. Phys. Rev. Lett. 73, 205–208 (1994)

    Article  ADS  CAS  Google Scholar 

  18. Martin, J. E., Odinek, J. & Halsey, T. C. Evolution of structure in a quiescent electrorheological fluid. Phys. Rev. Lett. 69, 1524–1527 (1992)

    Article  ADS  CAS  Google Scholar 

  19. Martin, J. E., Anderson, R. A. & Tigges, C. P. Simulation of the athermal coarsening of composites structured by a uniaxial field. J. Chem. Phys. 108, 3765–3787 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Dassanayake, U., Fraden, S. & van Blaaderen, A. Structure of electrorheological fluids. J. Chem. Phys. 112, 3851–3858 (2000)

    Article  ADS  CAS  Google Scholar 

  21. Bosma, G. et al. Preparation of monodisperse, fluorescent PMMA-latex colloids by dispersion polymerization. J. Colloid Interf. Sci. 245, 292–300 (2002)

    Article  ADS  CAS  Google Scholar 

  22. de Hoog, E. H. A., Kegel, W. K., van Blaaderen, A. & Lekkerkerker, H. N. W. Direct observation of crystallization and aggregation in a phase-separating colloid-polymer suspension. Phys. Rev. E 64, 021407 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Pronk, S. & Frenkel, D. Can stacking faults in hard-sphere crystals anneal out spontaneously? J. Chem. Phys. 110, 4589–4592 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Robbins, M. O., Kremer, K. & Grest, G. S. Phase diagram and dynamics of Yukawa systems. J. Chem. Phys. 88, 3286–3312 (1988)

    Article  ADS  CAS  Google Scholar 

  25. Sirota, E. B. et al. Complete phase-diagram of a charged colloidal system - A synchrotron X-ray scattering study. Phys. Rev. Lett. 62, 1524–1527 (1989)

    Article  ADS  CAS  Google Scholar 

  26. Monovoukas, Y. & Gast, A. P. The experimental phase diagram of charged colloidal suspensions. J. Colloid Interf. Sci. 128, 533–548 (1989)

    Article  ADS  CAS  Google Scholar 

  27. El Azhar, F., Baus, M., Ryckaert, J.-P. & Meijer, E. J. Line of triple points for the hard-core Yukawa model: A computer simulation study. 112, 5121–5126 (2000).

  28. Halsey, T. C. & Toor, W. Structure of electrorheological fluids. Phys. Rev. Lett. 65, 2820–2823 (1990)

    Article  ADS  CAS  Google Scholar 

  29. Holtz, J. H. & Asher, S. A. Polymerized colloidal crysal hydrogel films as intelligent chemical sensing materials. Nature 389, 829–832 (1997)

    Article  ADS  CAS  Google Scholar 

  30. O'Brien, R. W. & White, L. R. Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. II 74, 1607–1626 (1978)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Bosma for particle synthesis, C. van Kats for electrophoresis measurements, H. Wisman for technical support, K. van Walree for the suggestion of TCAB salt, and discussion of charge mechanisms, and J. Hoogenboom, S. Auer and D. Frenkel for discussion. We also thank M. Dijkstra and G. Patey for a critical reading of the manuscript. This work is part of the research program of the ‘Stichting voor Fundamenteel Onderzoek der Materie (FOM)’, which is financially supported by the ‘Nederlandse organisatie voor Wetenschappelijke Onderzoek (NWO)’.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anand Yethiraj or Alfons van Blaaderen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yethiraj, A., van Blaaderen, A. A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature 421, 513–517 (2003). https://doi.org/10.1038/nature01328

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01328

  • Springer Nature Limited

This article is cited by

Navigation