Skip to main content
Log in

Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Microcrystalline TiO2 with an anatase crystal structure is used as an anode material for lithium rechargeable batteries1,2, and also as a material for electrochromic3,4,5,6 and solar-cell devices7,8. When intercalated with lithium, as required for battery applications, TiO2 anatase undergoes spontaneous phase separation into lithium-poor (Li0.01TiO2) and lithium-rich (Li0.6TiO2) domains on a scale of several tens of nanometres9. During discharge, batteries need to maintain a constant electrical potential between their electrodes over a range of lithium concentrations. The two-phase equilibrium system in the electrodes provides such a plateau in potential, as only the relative phase fractions vary on charging (or discharging) of the lithium. Just as the equilibrium between a liquid and a vapour is maintained by a continuous exchange of particles between the two phases, a similar exchange is required to maintain equilibrium in the solid state. But the time and length scales over which this exchange takes place are unclear. Here we report the direct observation by solid-state nuclear magnetic resonance of the continuous lithium-ion exchange between the intermixed crystallographic phases of lithium-intercalated TiO2. We find that, at room temperature, the continuous flux of lithium ions across the phase boundaries is as high as 1.2 × 1020 s-1 m-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Central part of the 7Li magic-angle-spinning NMR spectrum of Li0.12TiO2 at 100 °C, showing the resonances of Li in the two coexisting phases.
Figure 2: Exchange of Li between the two coexisting phases in Li0.12TiO2 measured with 7Li two-dimensional exchange NMR.
Figure 3: Quantifying the diffusion process.

Similar content being viewed by others

References

  1. Huang, S. Y., Kavan, L., Exnar, I. & Grätzel, M. J. Rocking chair lithium battery based on nanocrystalline TiO2 (anatase). J. Electrochem. Soc. 142, L142–L144 (1995)

    Article  CAS  Google Scholar 

  2. Ohzuku, T., Kodama, T. & Hirai, T. Electrochemistry of anatase titanium dioxide in lithium non-aqueous cells. J. Power Sources 14, 153–166 (1985)

    Article  ADS  CAS  Google Scholar 

  3. Ohzuku, T. & Hirai, T. An electrochromic display based on titanium dioxide. Electrochim. Acta 27, 1263–1266 (1982)

    Article  Google Scholar 

  4. Ottaviani, M., Panero, S., Morzilli, S. & Scrosati, B. The electrochromic characteristics of titanium oxide thin film electrodes. Solid State Ionics 20, 197–202 (1986)

    Article  CAS  Google Scholar 

  5. Cantao, M. P., Cisneros, J. I. & Torresi, R. M. Electrochromic behaviour of sputtered titanium-oxide thin-films. Thin Solid Films 259, 70–74 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Bechinger, C., Ferrere, S., Zaban, A., Sprague, J. & Gregg, B. A. Photoelectrochromic windows and displays. Nature 383, 608–610 (1996)

    Article  ADS  CAS  Google Scholar 

  7. O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar-cell based on dye-sensitised colloidal TiO2 films. Nature 353, 737–740 (1991)

    Article  ADS  CAS  Google Scholar 

  8. Hagfeldt, A. & Grätzel, M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49–68 (1995)

    Article  CAS  Google Scholar 

  9. Wagemaker, M., van de Krol, R., Kentgens, A. P. M., van Well, A. A. & Mulder, F. M. Two phase morphology limits lithium diffusion in TiO2 (anatase): A Li-7 MAS NMR study. J. Am. Chem. Soc. 46, 11454–11461 (2001)

    Article  Google Scholar 

  10. Xu, Z. & Stebbins, J. F. Cation dynamics and diffusion in lithium orthosilicate — 2-dimensional Li-6 NMR. Science 270, 1332–1334 (1995)

    Article  ADS  CAS  Google Scholar 

  11. Verhoeven, V. W. J. et al. Lithium dynamics in LiMn2O4 probed directly by two-dimensional Li-7 NMR. Phys. Rev. Lett. 86, 4314–4317 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Ernst, R. R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon, Oxford, 1994)

    Google Scholar 

  13. Lunell, S., Stashans, A., Ojamae, L., Lindstrom, H. & Hagfeldt, A. Li and Na diffusion in TiO2 from quantum chemical theory versus electrochemical experiment. J. Am. Chem. Soc. 119, 7374–7380 (1997)

    Article  CAS  Google Scholar 

  14. Kavan, L., Grätzel, M., Gilbert, S. E., Klemenz, C. & Schell, H. J. Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 118, 6716–6723 (1996)

    Article  CAS  Google Scholar 

  15. Claus, J., Schmidt-Rohr, K. & Spiess, H. W. Determination of domain sizes in heterogeneous polymers by solid-state NMR. Acta Polym. 44, 1–17 (1993)

    Article  Google Scholar 

  16. Schmidt-Rohr, K. & Spiess, H. W. Multidimensional Solid-state NMR and Polymers (Academic, London, 1994)

    Google Scholar 

  17. Koudriachova, M. V., Harrison, N. M. & de Leeuw, S. W. Effect of diffusion on lithium intercalation in titanium dioxide. Phys. Rev. Lett. 86, 1275–1278 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is a contribution from the Delft Institute for Sustainable Energy (DISE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Mulder.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagemaker, M., Kentgens, A. & Mulder, F. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 418, 397–399 (2002). https://doi.org/10.1038/nature00901

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00901

  • Springer Nature Limited

This article is cited by

Navigation