Skip to main content

Advertisement

Log in

DNA nanotechnology

  • Review Article
  • Published:

From Nature Reviews Materials

View current issue Sign up to alerts

Abstract

DNA is the molecule that stores and transmits genetic information in biological systems. The field of DNA nanotechnology takes this molecule out of its biological context and uses its information to assemble structural motifs and then to connect them together. This field has had a remarkable impact on nanoscience and nanotechnology, and has been revolutionary in our ability to control molecular self-assembly. In this Review, we summarize the approaches used to assemble DNA nanostructures and examine their emerging applications in areas such as biophysics, diagnostics, nanoparticle and protein assembly, biomolecule structure determination, drug delivery and synthetic biology. The introduction of orthogonal interactions into DNA nanostructures is discussed, and finally, a perspective on the future directions of this field is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: A timeline of the field of DNA nanotechnology.
Figure 2: The beginning of DNA nanotechnology.
Figure 3: DNA origami and single-stranded tile assembly.
Figure 4: Three-dimensional structures from DNA.
Figure 5: Dynamic DNA nanostructures.
Figure 6: Supramolecular DNA assembly.
Figure 7: Interaction of DNA structures with polymers and lipids.
Figure 8: Nanoparticle assembly with DNA.
Figure 9: Protein assembly with DNA.
Figure 10: Biological applications of DNA nanotechnology.

Similar content being viewed by others

References

  1. Seeman, N. C. & Belcher, A. M. Emulating biology: building nanostructures from the bottom up. Proc. Natl Acad. Sci. USA 99, 6451–6455 (2002).

    Article  CAS  Google Scholar 

  2. Seeman, N. C. Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    Article  CAS  Google Scholar 

  3. Kallenbach, N. R., Ma, R. I. & Seeman, N. C. An immobile nucleic-acid junction constructed from oligonucleotides. Nature 305, 829–831 (1983).

    Article  CAS  Google Scholar 

  4. Chen, J. H. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    Article  CAS  Google Scholar 

  5. Fu, T. J. & Seeman, N. C. DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993).

    Article  CAS  Google Scholar 

  6. Li, X., Yang, X., Qi, J. & Seeman, N. C. Antiparallel DNA double crossover molecules as components for nanoconstruction. J. Am. Chem. Soc. 118, 6131–6140 (1996).

    Article  CAS  Google Scholar 

  7. Winfree, E., Liu, F. R., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    Article  CAS  Google Scholar 

  8. Mao, C. D., Sun, W. Q., Shen, Z. Y. & Seeman, N. C. A nanomechanical device based on the B–Z transition of DNA. Nature 397, 144–146 (1999).

    Article  CAS  Google Scholar 

  9. Lin, C., Liu, Y., Rinker, S. & Yan, H. DNA tile based self-assembly: building complex nanoarchitectures. ChemPhysChem 7, 1641–1647 (2006).

    Article  CAS  Google Scholar 

  10. McBride, L. J. & Caruthers, M. H. An investigation of several deoxynucleoside phosphoramidites useful for synthesizing deoxyoligonucleotides. Tetrahedron Lett. 24, 245–248 (1983).

    Article  CAS  Google Scholar 

  11. Kosuri, S. & Church, G. M. Large-scale de novo DNA synthesis: technologies and applications. Nat. Methods 11, 499–507 (2014).

    Article  CAS  Google Scholar 

  12. Hughes, R. A. & Ellington, A. D. DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb. Perspect. Biol. 9, a023812 (2017).

    Article  Google Scholar 

  13. Aldaye, F. A., Palmer, A. L. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).

    Article  CAS  Google Scholar 

  14. He, Y., Chen, Y., Liu, H., Ribbe, A. E. & Mao, C. Self-assembly of hexagonal DNA two-dimensional (2D) arrays J. Am. Chem. Soc. 127, 12202–12203 (2005).

    Article  CAS  Google Scholar 

  15. He, Y. Tian, Y., Ribbe, A. E. & Mao, C. Highly connected two-dimensional crystals of DNA six-point-stars. J. Am. Chem. Soc. 128, 15978–15979 (2006).

    Article  CAS  Google Scholar 

  16. Wang, X. An organic semiconductor organized into 3D DNA arrays via ‘bottom-up’ rational design Angew. Chem. Int. Ed. 56, 6445–6448 (2017).

    Article  CAS  Google Scholar 

  17. Liu, D. Wang, M., Deng, Z., Walulu, R. & Mao, C. Tensegrity: construction of rigid DNA triangles from flexible four-arm DNA junctions. J. Am. Chem. Soc. 126, 2324–2325 (2004).

    Article  CAS  Google Scholar 

  18. Hamada, S. & Murata, S. Substrate-assisted assembly of interconnected single-duplex DNA nanostructures. Angew. Chem. Int. Ed. 48, 6820–6823 (2009).

    Article  CAS  Google Scholar 

  19. Yan, H., LaBean, T. H., Feng, L. & Reif, J. H. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc. Natl Acad. Sci. USA 100, 8103–8108 (2003).

    Article  CAS  Google Scholar 

  20. Hamblin, G. D., Rahbani, J. F. & Sleiman, H. F. Sequential growth of long DNA strands with user-defined patterns for nanostructures and scaffolds. Nat. Commun. 6, 7065 (2015).

    Article  CAS  Google Scholar 

  21. Lau, K. L. & Sleiman, H. F. Minimalist approach to complexity: templating the assembly of DNA tile structures with sequentially grown input strands. ACS Nano 10, 6542–6551 (2016).

    Article  CAS  Google Scholar 

  22. He, Y. et al. Sequence symmetry as a tool for designing DNA nanostructures. Angew. Chem. Int. Ed. 44, 6694–6696 (2005).

    Article  CAS  Google Scholar 

  23. Rothemund, P. W., Papadakis, N. & Winfree, E. Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2, e424 (2004).

    Article  Google Scholar 

  24. Evans, C. G. & Winfree, E. Physical principles for DNA tile self-assembly. Chem. Soc. Rev. 46, 3808–3829 (2017).

    Article  CAS  Google Scholar 

  25. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  26. Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004).

    Article  CAS  Google Scholar 

  27. Wei, B., Dai, M. J. & Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–626 (2012).

    Article  CAS  Google Scholar 

  28. Schmidt, T. L. et al. Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries. Nat. Commun. 6, 8634 (2015).

    Article  CAS  Google Scholar 

  29. Marchi, A. N., Saaem, I., Tian, J. D. & LaBean, T. H. One-pot assembly of a hetero-dimeric DNA origami from chip-derived staples and double-stranded scaffold. ACS Nano 7, 903–910 (2013).

    Article  CAS  Google Scholar 

  30. Li, W., Yang, Y., Jiang, S. X., Yan, H. & Liu, Y. Controlled nucleation and growth of DNA tile arrays within prescribed DNA origami frames and their dynamics. J. Am. Chem. Soc. 136, 3724–3727 (2014).

    Article  CAS  Google Scholar 

  31. Liu, W., Zhong, H., Wang, R. & Seeman, N. C. Crystalline two-dimensional DNA-origami arrays. Angew. Chem. Int. Ed. 50, 264–267 (2011).

    Article  CAS  Google Scholar 

  32. Geary, C., Rothemund, P. W. & Andersen, E. S. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345, 799–804 (2014).

    Article  CAS  Google Scholar 

  33. Chworos, A. et al. Building programmable jigsaw puzzles with RNA. Science 306, 2068–2072 (2004).

    Article  CAS  Google Scholar 

  34. Afonin, K. A. et al. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat. Nanotechnol. 5, 676–682 (2010).

    Article  CAS  Google Scholar 

  35. Hao, C. H. et al. Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage. Nat. Commun. 5, 3890 (2014).

    Article  CAS  Google Scholar 

  36. Delebecque, C. J., Lindner, A. B., Silver, P. A. & Aldaye, F. A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 333, 470–474 (2011).

    Article  CAS  Google Scholar 

  37. Zhang, Y. & Seeman, N. C. Construction of a DNA-truncated octahedron. J. Am. Chem. Soc. 116, 1661–1669 (1994).

    Article  CAS  Google Scholar 

  38. Goodman, R. P., Berry, R. M. & Turberfield, A. J. The single-step synthesis of a DNA tetrahedron. Chem. Commun. (Camb.) 1372–1373 (2004).

  39. Aldaye, F. A. & Sleiman, H. F. Modular access to structurally switchable 3D discrete DNA assemblies. J. Am. Chem. Soc. 129, 13376–13377 (2007).

    Article  CAS  Google Scholar 

  40. He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008).

    Article  CAS  Google Scholar 

  41. Tian, C. et al. Directed self-assembly of DNA tiles into complex nanocages. Angew. Chem. Int. Ed. 53, 8041–8044 (2014).

    Article  CAS  Google Scholar 

  42. Yang, H. et al. Metal-nucleic acid cages. Nat. Chem. 1, 390–396 (2009).

    Article  CAS  Google Scholar 

  43. Shih, W. M. & Lin, C. Knitting complex weaves with DNA origami. Curr. Opin. Struct. Biol. 20, 276–282 (2010).

    Article  CAS  Google Scholar 

  44. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  Google Scholar 

  45. Ke, Y. et al. Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 131, 15903–15908 (2009).

    Article  CAS  Google Scholar 

  46. Dietz, H. et al. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article  CAS  Google Scholar 

  47. Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–75 (2009).

    Article  CAS  Google Scholar 

  48. Ke, Y. et al. Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett. 9, 2445–2447 (2009).

    Article  CAS  Google Scholar 

  49. Han, D. R. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).

    Article  CAS  Google Scholar 

  50. Endo, M., Hidaka, K., Kato, T., Namba, K. & Sugiyama, H. DNA prism structures constructed by folding of multiple rectangular arms. J. Am. Chem. Soc. 131, 15570–15571 (2009).

    Article  CAS  Google Scholar 

  51. Benson, E. et al. DNA rendering of polyhedral meshes at the nanoscale. Nature 523, 441–444 (2015).

    Article  CAS  Google Scholar 

  52. Zhang, F. et al. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotechnol. 10, 779–784 (2015).

    Article  CAS  Google Scholar 

  53. Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    Article  CAS  Google Scholar 

  54. Liu, H. P., Chen, Y., He, Y., Ribbe, A. E. & Mao, C. D. Approaching the limit: can one DNA oligonucleotide assemble into large nanostructures? Angew. Chem. Int. Ed. 45, 1942–1945 (2006).

    Article  CAS  Google Scholar 

  55. Rothemund, P. W. et al. Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 126, 16344–16352 (2004).

    Article  CAS  Google Scholar 

  56. Mitchell, J. C., Harris, J. R., Malo, J., Bath, J. & Turberfield, A. J. Self-assembly of chiral DNA nanotubes. J. Am. Chem. Soc. 126, 16342–16343 (2004).

    Article  CAS  Google Scholar 

  57. Lin, C. et al. Functional DNA nanotube arrays: bottom-up meets top-down. Angew. Chem. Int. Ed. 46, 6089–6092 (2007).

    Article  CAS  Google Scholar 

  58. Mathieu, F. et al. Six-helix bundles designed from DNA. Nano Lett. 5, 661–665 (2005).

    Article  CAS  Google Scholar 

  59. Douglas, S. M., Chou, J. J. & Shih, W. M. DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl Acad. Sci. USA 104, 6644–6648 (2007).

    Article  CAS  Google Scholar 

  60. Yin, P. et al. Programming DNA tube circumferences. Science 321, 824–826 (2008).

    Article  CAS  Google Scholar 

  61. Lo, P. K., Aldaye, F. A. & Sleiman, H. F. Modular construction of DNA nanotubes of tunable geometry, alternating size, and single- or double-stranded character. J. Biomol. Struct. Dyn. 26, 801 (2009).

    Google Scholar 

  62. Wilner, O. I., Henning, A., Shlyahovsky, B. & Willner, I. Covalently linked DNA nanotubes. Nano Lett. 10, 1458–1465 (2010).

    Article  CAS  Google Scholar 

  63. Paukstelis, P. J., Nowakowski, J., Birktoft, J. J. & Seeman, N. C. Crystal structure of a continuous three-dimensional DNA lattice. Chem. Biol. 11, 1119–1126 (2004).

    Article  CAS  Google Scholar 

  64. Zheng, J. et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).

    Article  CAS  Google Scholar 

  65. Zhao, J. et al. Post-assembly stabilization of rationally designed DNA crystals. Angew. Chem. Int. Ed. 54, 9936–9939 (2015).

    Article  CAS  Google Scholar 

  66. Stahl, E., Praetorius, F., de Oliveira Mann, C. C., Hopfner, K.-P. & Dietz, H. Impact of heterogeneity and lattice bond strength on DNA triangle crystal growth. ACS Nano 10, 9156–9164 (2016).

    Article  CAS  Google Scholar 

  67. Simmons, C. R. et al. Construction and structure determination of a three-dimensional DNA crystal. J. Am. Chem. Soc. 138, 10047–10054 (2016).

    Article  CAS  Google Scholar 

  68. Brady, R. A., Brooks, N. J., Cicuta, P. & Di Michele, L. Crystallization of amphiphilic DNA C-stars. Nano Lett. 17, 3276–3281 (2017).

    Article  CAS  Google Scholar 

  69. Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article  CAS  Google Scholar 

  70. Yan, H., Zhang, X. P., Shen, Z. Y. & Seeman, N. C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).

    Article  CAS  Google Scholar 

  71. Feng, L., Park, S. H., Reif, J. H. & Yan, H. A two-state DNA lattice switched by DNA nanoactuator. Angew. Chem. Int. Ed. 42, 4342–4346 (2003).

    Article  CAS  Google Scholar 

  72. Dirks, R. M. & Pierce, N. A. Triggered amplification by hybridization chain reaction. Proc. Natl Acad. Sci. USA 101, 15275–15278 (2004).

    Article  CAS  Google Scholar 

  73. Yin, P., Choi, H. M., Calvert, C. R. & Pierce, N. A. Programming biomolecular self-assembly pathways. Nature 451, 318–322 (2008).

    Article  CAS  Google Scholar 

  74. Sherman, W. B. & Seeman, N. C. A precisely controlled DNA bipedal walking device. Nano Lett. 4, 1203–1207 (2004).

    Article  CAS  Google Scholar 

  75. Omabegho, T., Sha, R. & Seeman, N. C. A bipedal DNA Brownian motor with coordinated legs. Science 324, 67–71 (2009).

    Article  CAS  Google Scholar 

  76. Tian, Y. & Mao, C. D. Molecular gears: a pair of DNA circles continuously rolls against each other. J. Am. Chem. Soc. 126, 11410–11411 (2004).

    Article  CAS  Google Scholar 

  77. Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010).

    Article  CAS  Google Scholar 

  78. Gu, H. Z., Chao, J., Xiao, S. J. & Seeman, N. C. A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–205 (2010).

    Article  CAS  Google Scholar 

  79. Liao, S. & Seeman, N. C. Translation of DNA signals into polymer assembly instructions. Science 306, 2072–2074 (2004).

    Article  CAS  Google Scholar 

  80. He, Y. & Liu, D. R. Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat. Nanotechnol. 5, 778–782 (2010).

    Article  CAS  Google Scholar 

  81. Padilla, J. E. et al. A signal-passing DNA-strand-exchange mechanism for active self-assembly of DNA nanostructures. Angew. Chem. Int. Ed. 54, 5939–5942 (2015).

    Article  CAS  Google Scholar 

  82. Gu, H., Chao, J., Xiao, S.-J. & Seeman, N. C. Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. Nat. Nanotechnol. 4, 245–248 (2009).

    Article  CAS  Google Scholar 

  83. Liber, M., Tomov, T. E., Tsukanov, R., Berger, Y. & Nir, E. A bipedal DNA motor that travels back and forth between two DNA origami tiles. Small 11, 568–575 (2015).

    Article  CAS  Google Scholar 

  84. Goodman, R. P. et al. Reconfigurable, braced, three-dimensional DNA nanostructures. Nat. Nanotechnol. 3, 93–96 (2008).

    Article  CAS  Google Scholar 

  85. Lo, P. K., Altvater, F. & Sleiman, H. F. Templated synthesis of DNA nanotubes with controlled, predetermined lengths. J. Am. Chem. Soc. 132, 10212–10214 (2010).

    Article  CAS  Google Scholar 

  86. Li, Y., Tian, C., Liu, Z., Jiang, W. & Mao, C. Structural transformation: assembly of an otherwise inaccessible DNA nanocage. Angew. Chem. Int. Ed. 54, 5990–5993 (2015).

    Article  CAS  Google Scholar 

  87. Han, D. R., Pal, S., Liu, Y. & Yan, H. Folding and cutting DNA into reconfigurable topological nanostructures. Nat. Nanotechnol. 5, 712–717 (2010).

    Article  CAS  Google Scholar 

  88. Yang, Y., Endo, M., Hidaka, K. & Sugiyama, H. Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. J. Am. Chem. Soc. 134, 20645–20653 (2012).

    Article  CAS  Google Scholar 

  89. Asanuma, H. et al. Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription. Nat. Protoc. 2, 203–212 (2007).

    Article  CAS  Google Scholar 

  90. Maye, M. M., Kumara, M. T., Nykypanchuk, D., Sherman, W. B. & Gang, O. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat. Nanotechnol. 5, 116–120 (2010).

    Article  CAS  Google Scholar 

  91. Shi, J. F. & Bergstrom, D. E. Assembly of novel DNA cycles with rigid tetrahedral linkers. Angew. Chem. Int. Ed. Engl. 36, 111–113 (1997).

    Article  CAS  Google Scholar 

  92. Aldaye, F. A. & Sleiman, H. F. Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles. Angew. Chem. Int. Ed. 118, 2262–2267 (2006).

    Article  Google Scholar 

  93. Eryazici, I., Yildirim, I., Schatz, G. C. & Nguyen, S. T. Enhancing the melting properties of small molecule-DNA hybrids through designed hydrophobic interactions: an experimental-computational study. J. Am. Chem. Soc. 134, 7450–7458 (2012).

    Article  CAS  Google Scholar 

  94. Greschner, A. A., Toader, V. & Sleiman, H. F. The role of organic linkers in directing DNA self-assembly and significantly stabilizing DNA duplexes. J. Am. Chem. Soc. 134, 14382–14389 (2012).

    Article  CAS  Google Scholar 

  95. Thaner, R. V., Eryazici, I., Farha, O. K., Mirkin, C. A. & Nguyen, S. T. Facile one-step solid-phase synthesis of multitopic organic–DNA hybrids via “click” chemistry. Chem. Sci. 5, 1091–1096 (2014).

    Article  CAS  Google Scholar 

  96. Chaput, J. C. & Switzer, C. A DNA pentaplex incorporating nucleobase quintets. Proc. Natl Acad. Sci. USA 96, 10614–10619 (1999).

    Article  CAS  Google Scholar 

  97. Avakyan, N. et al. Reprogramming the assembly of unmodified DNA with a small molecule. Nat. Chem. 8, 368–376 (2016).

    Article  CAS  Google Scholar 

  98. Leal, N. A. et al. Transcription, reverse transcription, and analysis of RNA containing artificial genetic components. ACS Synth. Biol. 4, 407–413(2015).

    Article  CAS  Google Scholar 

  99. Winnacker, M. & Kool, E. T. Artificial genetic sets composed of size-expanded base pairs. Angew. Chem. Int. Ed. 52, 12498–12508 (2013).

    Article  CAS  Google Scholar 

  100. Malyshev, D. A. & Romesberg, F. E. The expanded genetic alphabet. Angew. Chem. Int. Ed. 54, 11930–11944 (2015).

    Article  CAS  Google Scholar 

  101. Malyshev, D. A. et al. A semi-synthetic organism with an expanded genetic alphabet. Nature 509, 385–388 (2014).

    Article  CAS  Google Scholar 

  102. Zhang, Y. et al. A semisynthetic organism engineered for the stable expansion of the genetic alphabet. Proc. Natl Acad. Sci. USA 114, 1317–1322 (2017).

    Article  CAS  Google Scholar 

  103. Nielsen, P., Egholm, M., Berg, R. & Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500 (1991).

    Article  CAS  Google Scholar 

  104. Wengel, J. Synthesis of 3′-C- and 4′-C-branched oligodeoxynucleotides and the development of locked nucleic acid (LNA). Acc. Chem. Res. 32, 301–310 (1999).

    Article  CAS  Google Scholar 

  105. Urata, H., Ogura, E., Shinohara, K., Ueda, Y. & Akagi, M. Synthesis and properties of mirror-image DNA. Nucleic Acids Res. 20, 3325–3332 (1992).

    Article  CAS  Google Scholar 

  106. Damha, M. J. et al. Hybrids of RNA and arabinonucleic acids (ANA and 2′F-ANA) are substrates of ribonuclease H. J. Am. Chem. Soc. 120, 12976–12977 (1998).

    Article  CAS  Google Scholar 

  107. Deleavey, G. F. & Damha, M. J. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol. 19, 937–954 (2012).

    Article  CAS  Google Scholar 

  108. Vargas-Baca, I., Mitra, D., Zulyniak, H. J., Banerjee, J. & Sleiman, H. F. Solid-phase synthesis of transition metal linked, branched oligonucleotides. Angew. Chem. Int. Ed. 40, 4629–4632 (2001).

    Article  CAS  Google Scholar 

  109. Mitra, D., Di Cesare, N. & Sleiman, H. F. Self-assembly of cyclic metal-DNA nanostuctures using ruthenium tris(bipyridine)-branched oligonucleotides. Angew. Chem. Int. Ed. 43, 5804–5808 (2004).

    Article  CAS  Google Scholar 

  110. McLaughlin, C. K., Hamblin, G. D. & Sleiman, H. F. Supramolecular DNA assembly. Chem. Soc. Rev. 40, 5647–5656 (2011).

    Article  CAS  Google Scholar 

  111. Yang, H., Rys, A. Z., McLaughlin, C. K. & Sleiman, H. F. Templated ligand environments for the selective incorporation of different metals into DNA. Angew. Chem. Int. Ed. 48, 9919–9923 (2009).

    Article  CAS  Google Scholar 

  112. Yang, H. & Sleiman, H. F. Templated synthesis of highly stable, electroactive, and dynamic metal–DNA branched junctions. Angew. Chem. Int. Ed. 47, 2443–2446 (2008).

    Article  CAS  Google Scholar 

  113. Yang, H. et al. Chiral metal–DNA four-arm junctions and metalated nanotubular structures. Angew. Chem. Int. Ed. 50, 4620–4623 (2011).

    Article  CAS  Google Scholar 

  114. Kaul, C., Muller, M., Wagner, M., Schneider, S. & Carell, T. Reversible bond formation enables the replication and amplification of a crosslinking salen complex as an orthogonal base pair. Nat. Chem. 3, 794–800 (2011).

    Article  CAS  Google Scholar 

  115. Gothelf, K. V., Thomsen, A., Nielsen, M., Clo, E. & Brown, R. S. Modular DNA-programmed assembly of linear and branched conjugated nanostructures. J. Am. Chem. Soc. 126, 1044–1046 (2004).

    Article  CAS  Google Scholar 

  116. Tanaka, K., Tengeiji, A., Kato, T., Toyama, N. & Shionoya, M. A discrete self-assembled metal array in artificial DNA. Science 299, 1212–1213 (2003).

    Article  CAS  Google Scholar 

  117. Meggers, E., Holland, P. L., Tolman, W. B., Romesberg, F. E. & Schultz, P. G. A novel copper-mediated DNA base pair. J. Am. Chem. Soc. 122, 10714–10715 (2000).

    Article  CAS  Google Scholar 

  118. Clever, G. H., Kaul, C. & Carell, T. DNA–metal base pairs. Angew. Chem. Int. Ed. 46, 6226–6236 (2007).

    Article  CAS  Google Scholar 

  119. Liu, S. et al. Direct conductance measurement of individual metallo-DNA duplexes within single-molecule break junctions. Angew. Chem. Int. Ed. 50, 8886–8890 (2011).

    Article  CAS  Google Scholar 

  120. Tanaka, K. et al. Programmable self-assembly of metal ions inside artificial DNA duplexes. Nat. Nanotechnol. 1, 190–194 (2006).

    Article  CAS  Google Scholar 

  121. Endo, M., Seeman, N. C. & Majima, T. DNA tube structures controlled by a four-way-branched DNA connector. Angew. Chem. Int. Ed. 44, 6074–6077 (2005).

    Article  CAS  Google Scholar 

  122. Endo, M., Shiroyama, T., Fujitsuka, M. & Majima, T. Four-way-branched DNA-porphyrin conjugates for construction of four double-helix-DNA assembled structures. J. Org. Chem. 70, 7468–7472 (2005).

    Article  CAS  Google Scholar 

  123. Mai, Y. Y. & Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 41, 5969–5985 (2012).

    Article  CAS  Google Scholar 

  124. Chien, M.-P., Rush, A. M., Thompson, M. P. & Gianneschi, N. C. Programmable shape-shifting micelles. Angew. Chem. Int. Ed. 49, 5076–5080 (2010).

    Article  CAS  Google Scholar 

  125. Ding, K., Alemdaroglu, F. E., Borsch, M., Berger, R. & Herrmann, A. Engineering the structural properties of DNA block copolymer micelles by molecular recognition. Angew. Chem. Int. Ed. 46, 1172–1175 (2007).

    Article  CAS  Google Scholar 

  126. Edwardson, T. G., Carneiro, K. M., Serpell, C. J. & Sleiman, H. F. An efficient and modular route to sequence-defined polymers appended to DNA. Angew. Chem. Int. Ed. 53, 4567–4571 (2014).

    Article  CAS  Google Scholar 

  127. Serpell, C. J., Edwardson, T. G., Chidchob, P., Carneiro, K. M. & Sleiman, H. F. Precision polymers and 3D DNA nanostructures: emergent assemblies from new parameter space. J. Am. Chem. Soc. 136, 15767–15774 (2014).

    Article  CAS  Google Scholar 

  128. Chidchob, P., Edwardson, T. G., Serpell, C. J. & Sleiman, H. F. Synergy of two assembly languages in DNA nanostructures: self-assembly of sequence-defined polymers on DNA cages. J. Am. Chem. Soc. 138, 4416–4425 (2016).

    Article  CAS  Google Scholar 

  129. Edwardson, T. G., Carneiro, K. M., McLaughlin, C. K., Serpell, C. J. & Sleiman, H. F. Site-specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly. Nat. Chem. 5, 868–875 (2013).

    Article  CAS  Google Scholar 

  130. List, J., Weber, M. & Simmel, F. C. Hydrophobic actuation of a DNA origami bilayer structure. Angew. Chem. Int. Ed. 53, 4236–4239 (2014).

    Article  CAS  Google Scholar 

  131. Conway, J. W. et al. Dynamic behavior of DNA cages anchored on spherically supported lipid bilayers. J. Am. Chem. Soc. 136, 12987–12997 (2014).

    Article  CAS  Google Scholar 

  132. Suzuki, Y., Endo, M. & Sugiyama, H. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures. Nat. Commun. 6, 8052 (2015).

    Article  CAS  Google Scholar 

  133. Suzuki, Y., Endo, M., Yang, Y. & Sugiyama, H. Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface. J. Am. Chem. Soc. 136, 1714–1717 (2014).

    Article  CAS  Google Scholar 

  134. Langecker, M. et al. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338, 932–936 (2012).

    Article  CAS  Google Scholar 

  135. Bell, N. A. & Keyser, U. F. Nanopores formed by DNA origami: a review. FEBS Lett. 588, 3564–3570 (2014).

    Article  CAS  Google Scholar 

  136. Burns, J. R., Al-Juffali, N., Janes, S. M. & Howorka, S. Membrane-spanning DNA nanopores with cytotoxic effect. Angew. Chem. Int. Ed. 53, 12466–12470 (2014).

    Article  CAS  Google Scholar 

  137. Yang, Y. et al. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem. 8, 476–483 (2016).

    Article  CAS  Google Scholar 

  138. Knudsen, J. B. et al. Routing of individual polymers in designed patterns. Nat. Nanotechnol. 10, 892–898 (2015).

    Article  CAS  Google Scholar 

  139. Lohse, S. E. & Murphy, C. J. Applications of colloidal inorganic nanoparticles: from medicine to energy. J. Am. Chem. Soc. 134, 15607–15620 (2012).

    Article  CAS  Google Scholar 

  140. Klinkova, A., Choueiri, R. M. & Kumacheva, E. Self-assembled plasmonic nanostructures. Chem. Soc. Rev. 43, 3976–3991 (2014).

    Article  CAS  Google Scholar 

  141. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  142. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  143. Zheng, J. et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504 (2006).

    Article  CAS  Google Scholar 

  144. Aldaye, F. A. & Sleiman, H. F. Dynamic DNA templates for discrete gold nanoparticle assemblies: control of geometry, modularity, write/erase and structural switching. J. Am. Chem. Soc. 129, 4130–4131 (2007).

    Article  CAS  Google Scholar 

  145. Mastroianni, A. J., Claridge, S. A. & Alivisatos, A. P. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J. Am. Chem. Soc. 131, 8455–8459 (2009).

    Article  CAS  Google Scholar 

  146. Sharma, J. et al. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323, 112–116 (2009).

    Article  CAS  Google Scholar 

  147. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    Article  CAS  Google Scholar 

  148. Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    Article  CAS  Google Scholar 

  149. Acuna, G. P. et al. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506–510 (2012).

    Article  CAS  Google Scholar 

  150. Wang, D. B. et al. Hierarchical assembly of plasmonic nanostructures using virus capsid scaffolds on DNA origami templates. ACS Nano 8, 7896–7904 (2014).

    Article  CAS  Google Scholar 

  151. Edwardson, T. G., Lau, K. L., Bousmail, D., Serpell, C. J. & Sleiman, H. F. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nat. Chem. 8, 162–170 (2016).

    Article  CAS  Google Scholar 

  152. Helmi, S., Ziegler, C., Kauert, D. J. & Seidel, R. Shape-controlled synthesis of gold nanostructures using DNA origami molds. Nano Lett. 14, 6693–6698 (2014).

    Article  CAS  Google Scholar 

  153. Sun, W. et al. Casting inorganic structures with DNA molds. Science 346, 1258361 (2014).

    Article  CAS  Google Scholar 

  154. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  Google Scholar 

  155. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  Google Scholar 

  156. Liu, W. et al. Diamond family of nanoparticle superlattices. Science 351, 582–586 (2016).

    Article  CAS  Google Scholar 

  157. Udomprasert, A. et al. Amyloid fibrils nucleated and organized by DNA origami constructions. Nat. Nanotechnol. 9, 537–541 (2014).

    Article  CAS  Google Scholar 

  158. Selmi, D. N. et al. DNA-templated protein arrays for single-molecule imaging. Nano Lett. 11, 657–660 (2011).

    Article  CAS  Google Scholar 

  159. Erben, C. M., Goodman, R. P. & Turberfield, A. J. Single-molecule protein encapsulation in a rigid DNA cage. Angew. Chem. Int. Ed. 45, 7414–7417 (2006).

    Article  CAS  Google Scholar 

  160. Raschle, T., Lin, C., Jungmann, R., Shih, W. M. & Wagner, G. Controlled co-reconstitution of multiple membrane proteins in lipid bilayer nanodiscs using DNA as a scaffold. ACS Chem. Biol. 10, 2448–2454 (2015).

    Article  CAS  Google Scholar 

  161. Niemeyer, C. M., Sano, T., Smith, C. L. & Cantor, C. R. Oligonucleotide-directed self-assembly of proteins: semisynthetic DNA–streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates. Nucleic Acids Res. 22, 5530–5539 (1994).

    Article  CAS  Google Scholar 

  162. Wilner, O. I. et al. Enzyme cascades activated on topologically programmed DNA scaffolds. Nat. Nanotechnol. 4, 249–254 (2009).

    Article  CAS  Google Scholar 

  163. Fu, J. et al. Assembly of multienzyme complexes on DNA nanostructures. Nat. Protoc. 11, 2243–2273 (2016).

    Article  CAS  Google Scholar 

  164. Fu, J. et al. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat. Nanotechnol. 9, 531–536 (2014).

    Article  CAS  Google Scholar 

  165. Derr, N. D. et al. Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold. Science 338, 662–665 (2012).

    Article  CAS  Google Scholar 

  166. Dutta, P. K. et al. A DNA-directed light-harvesting/reaction center system. J. Am. Chem. Soc. 136, 16618–16625 (2014).

    Article  CAS  Google Scholar 

  167. Rosenzweig, B. A. et al. Multivalent protein binding and precipitation by self-assembling molecules on a DNA pentaplex scaffold. J. Am. Chem. Soc. 131, 5020–5021 (2009).

    Article  CAS  Google Scholar 

  168. Rinker, S., Ke, Y., Liu, Y., Chhabra, R. & Yan, H. Self-assembled DNA nanostructures for distance-dependent multivalent ligand–protein binding. Nat. Nanotechnol. 3, 418–422 (2008).

    Article  CAS  Google Scholar 

  169. Praetorius, F. & Dietz, H. Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes. Science 355, eaam5488 (2017).

    Article  CAS  Google Scholar 

  170. Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11, 313–318 (2014).

    Article  CAS  Google Scholar 

  171. Lin, C. X. et al. Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. Nat. Chem. 4, 832–839 (2012).

    Article  CAS  Google Scholar 

  172. Suzuki, Y. et al. DNA origami based visualization system for studying site-specific recombination events. J. Am. Chem. Soc. 136, 211–218 (2014).

    Article  CAS  Google Scholar 

  173. Endo, M. et al. Single-molecule manipulation of the duplex formation and dissociation at the G-quadruplex/i-motif site in the DNA nanostructure. ACS Nano 9, 9922–9929 (2015).

    Article  CAS  Google Scholar 

  174. Modi, S., Nizak, C., Surana, S., Halder, S. & Krishnan, Y. Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat. Nanotechnol. 8, 459–467 (2013).

    Article  CAS  Google Scholar 

  175. Tibbitt, M. W., Dahlman, J. E. & Langer, R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 138, 704–717 (2016).

    Article  CAS  Google Scholar 

  176. Williford, J. M., Santos, J. L., Shyam, R. & Mao, H. Q. Shape control in engineering of polymeric nanoparticles for therapeutic delivery. Biomater. Sci. 3, 894–907 (2015).

    Article  CAS  Google Scholar 

  177. Walsh, A. S., Yin, H. F., Erben, C. M., Wood, M. J. & Turberfield, A. J. DNA cage delivery to mammalian cells. ACS Nano 5, 5427–5432 (2011).

    Article  CAS  Google Scholar 

  178. Hamblin, G. D., Carneiro, K. M., Fakhoury, J. F., Bujold, K. E. & Sleiman, H. F. Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability. J. Am. Chem. Soc. 134, 2888–2891 (2012).

    Article  CAS  Google Scholar 

  179. Jensen, S. A. et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl Med. 5, 209ra152 (2013).

    Article  CAS  Google Scholar 

  180. Liang, L. et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew. Chem. Int. Ed. 53, 7745–7750 (2014).

    Article  CAS  Google Scholar 

  181. Vindigni, G. et al. Receptor-mediated entry of pristine octahedral DNA nanocages in mammalian cells. ACS Nano 10, 5971–5979 (2016).

    Article  CAS  Google Scholar 

  182. Fakhoury, J. J., McLaughlin, C. K., Edwardson, T. W., Conway, J. W. & Sleiman, H. F. Development and characterization of gene silencing DNA cages. Biomacromolecules 15, 276–282 (2014).

    Article  CAS  Google Scholar 

  183. Fakhoury, J. J. et al. Antisense precision polymer micelles require less poly(ethylenimine) for efficient gene knockdown. Nanoscale 7, 20625–20634 (2015).

    Article  CAS  Google Scholar 

  184. Conway, J. W., McLaughlin, C. K., Castor, K. J. & Sleiman, H. DNA nanostructure serum stability: greater than the sum of its parts. Chem. Commun. (Camb) 49, 1172–1174 (2013).

    Article  CAS  Google Scholar 

  185. Mei, Q. A. et al. Stability of DNA origami nanoarrays in cell lysate. Nano Lett. 11, 1477–1482 (2011).

    Article  CAS  Google Scholar 

  186. Hahn, J., Wickham, S. F., Shih, W. M. & Perrault, S. D. Addressing the instability of DNA nanostructures in tissue culture. ACS Nano 8, 8765–8775 (2014).

    Article  CAS  Google Scholar 

  187. Martin, T. G. & Dietz, H. Magnesium-free self-assembly of multi-layer DNA objects. Nat. Commun. 3, 1103 (2012).

    Article  CAS  Google Scholar 

  188. Ponnuswamy, N. et al. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat. Commun. 8, 15654 (2017).

    Article  CAS  Google Scholar 

  189. Jiang, Q. et al. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 134, 13396–13403 (2012).

    Article  CAS  Google Scholar 

  190. Zhao, Y.-X. et al. DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 6, 8684–8691 (2012).

    Article  CAS  Google Scholar 

  191. Orava, E. W., Cicmil, N. & Gariepy, J. Delivering cargoes into cancer cells using DNA aptamers targeting internalized surface portals. Biochim. Biophys. Acta 1798, 2190–2200 (2010).

    Article  CAS  Google Scholar 

  192. Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012).

    Article  CAS  Google Scholar 

  193. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    Article  CAS  Google Scholar 

  194. Bujold, K. E. et al. Sequence-responsive unzipping DNA cubes with tunable cellular uptake profiles. Chem. Sci. 5, 2449–2455 (2014).

    Article  CAS  Google Scholar 

  195. Bujold, K. E., Hsu, J. C. & Sleiman, H. F. Optimized DNA “nanosuitcases” for encapsulation and conditional release of siRNA. J. Am. Chem. Soc. 138, 14030–14038 (2016).

    Article  CAS  Google Scholar 

  196. Lacroix, A., Edwardson, T. G. W., Hancock, M. A., Dore, M. D. & Sleiman, H. F. Development of DNA nanostructures for high-affinity binding to human serum albumin. J. Am. Chem. Soc. 139, 7355–7362 (2017).

    Article  CAS  Google Scholar 

  197. Kratz, F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 132, 171–183 (2008).

    Article  CAS  Google Scholar 

  198. Boekhoven, J. & Stupp, S. I. 25th Anniversary article: supramolecular materials for regenerative medicine. Adv. Mater. 26, 1642–1659 (2014).

    Article  CAS  Google Scholar 

  199. Aldaye, F. A., Senapedis, W. T., Silver, P. A. & Way, J. C. A structurally tunable DNA-based extracellular matrix. J. Am. Chem. Soc. 132, 14727–14729 (2010).

    Article  CAS  Google Scholar 

  200. Stephanopoulos, N. et al. Bioactive DNA-peptide nanotubes enhance the differentiation of neural stem cells into neurons. Nano Lett. 15, 603–609 (2014).

    Article  CAS  Google Scholar 

  201. Wang, T., Schiffels, D., Cuesta, S. M., Fygenson, D. K. & Seeman, N. C. Design and characterization of 1D nanotubes and 2D periodic arrays self-assembled from DNA multi-helix bundles. J. Am. Chem. Soc. 134, 1606–1616 (2012).

    Article  CAS  Google Scholar 

  202. Howes, P. D., Rana, S. & Stevens, M. M. Plasmonic nanomaterials for biodiagnostics. Chem. Soc. Rev, 43, 3835–3853 (2014).

    Article  CAS  Google Scholar 

  203. Austin, L. A., Kang, B. & El-Sayed, M. A. Probing molecular cell event dynamics at the single-cell level with targeted plasmonic gold nanoparticles: a review. Nano Today 10, 542–558 (2015).

    Article  CAS  Google Scholar 

  204. Ayala-Orozco, C. et al. Sub-100 nm gold nanomatryoshkas improve photo-thermal therapy efficacy in large and highly aggressive triple negative breast tumors. J. Control. Release 191, 90–97 (2014).

    Article  CAS  Google Scholar 

  205. Rosen, C. B. et al. Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins. Nat. Chem. 6, 804–809 (2014).

    Article  CAS  Google Scholar 

  206. Flory, J. D. et al. Low temperature assembly of functional 3D DNA-PNA-protein complexes. J. Am. Chem. Soc. 136, 8283–8295 (2014).

    Article  CAS  Google Scholar 

  207. Trads, J. B., Tørring, T. & Gothelf, K. V. Site-selective conjugation of native proteins with DNA. Acc. Chem. Res. 50, 1367–1374 (2017).

    Article  CAS  Google Scholar 

  208. Seeman, N. Structural DNA Nanotechnology (Cambridge Univ. Press, 2016).

    Google Scholar 

  209. Ducani, C., Kaul, C., Moche, M., Shih, W. M. & Hogberg, B. Enzymatic production of ‘monoclonal stoichiometric’ single-stranded DNA oligonucleotides. Nat. Methods 10, 647–652 (2013).

    Article  CAS  Google Scholar 

  210. Adamala, K. & Szostak, J. W. Nonenzymatic template-directed RNA synthesis inside model protocells. Science 342, 1098–1100 (2013).

    Article  CAS  Google Scholar 

  211. Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).

    Article  CAS  Google Scholar 

  212. Mao, C., Sun, W. & Seeman, N. C. Assembly of Borromean rings from DNA. Nature 386, 137–138 (1997).

    Article  CAS  Google Scholar 

  213. Mao, C., LaBean, T., Reif, J. H. & Seeman, N. C. Logical computation using algorithmic self-assembly of DNA triple crossover molecules. Nature 407, 493–496 (2000).

    Article  CAS  Google Scholar 

  214. Wang, T. et al. Self-replication of information-bearing nanoscale patterns. Nature 478, 225–228 (2011).

    Article  CAS  Google Scholar 

  215. Park, S. H. Three-helix bundle DNA tiles self-assemble into 2D lattice or 1D templates for silver nanowires. Nano Lett. 5, 693–696 (2005).

    Article  CAS  Google Scholar 

  216. Hao, Y. et al. A device that operates within a self-assembled 3D DNA crystal. Nat. Chem. 9, 824–827 (2017).

    Article  CAS  Google Scholar 

  217. Seeman, N. C. Biochemistry and structural DNA nanotechnology: an evolving symbiotic relationship. Biochemistry 42, 7259–7269 (2003).

    Article  CAS  Google Scholar 

  218. Goodman, R. P. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).

    Article  CAS  Google Scholar 

  219. Wang, T. et al. A DNA crystal designed to contain two molecules per asymmetric unit. J. Am. Chem. Soc. 132, 15471–15473 (2010).

    Article  CAS  Google Scholar 

  220. Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions Nat. Chem. 3, 103–113 (2011).

    Article  CAS  Google Scholar 

  221. Lo, P. K. et al. Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nat. Chem. 2, 319–328 (2010).

    Article  CAS  Google Scholar 

  222. Yang, H. Metera, K. L. & Sleiman, H. F. DNA modified with metal complexes: applications in the construction of higher-order metal–DNA nanostructures. Coord. Chem. Rev. 254, 2403–2415 (2010).

    Article  CAS  Google Scholar 

  223. Mueller, J. E. Du, S. M. & Seeman, N. C. The design and synthesis of a knot from single-stranded DNA. J. Am. Chem. Soc. 113, 6306–6308 (1991).

    Article  CAS  Google Scholar 

  224. Kahn, J. S., Hu, Y. & Willner, I. Stimuli-responsive DNA-based hydrogels: from basic principles to applications. Acc. Chem. Res. 50, 680–690 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by the following grants to H.F.S.: Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Research Chairs Program, the Canadian Institutes of Health Research (CIHR), Fonds de recherche du Québec — Nature et technologies (FRQNT) and Prostate Cancer Canada. The following grants were provided to N.C.S.: EFRI-1332411 and CCF-1526650 from the National Science Foundation (NSF), MURI W911NF-11-1-0024 from the US Army Research Office (ARO), N000141110729 from the US Office of Naval Research (ONR), DE-SC0007991 from the US Department of Energy (DOE) for DNA synthesis, and partial salary support and grant GBMF3849 from the Gordon and Betty Moore Foundation. The authors thank P. Chidchob, A. Lacroix, N. Avakyan, J. Hsu, D. Bousmail, T. Trinh, D. de Rochambeau, H. Fakih, E. Vengut Climent and M. Dore for help proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H.F.S. researched the data for the article. H.F.S. and N.C.S. wrote the article and edited it before submission.

Corresponding authors

Correspondence to Nadrian C. Seeman or Hanadi F. Sleiman.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seeman, N., Sleiman, H. DNA nanotechnology. Nat Rev Mater 3, 17068 (2018). https://doi.org/10.1038/natrevmats.2017.68

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2017.68

  • Springer Nature Limited

This article is cited by

Navigation