Abstract
The molecular characterization of myeloproliferative neoplasms, including essential thrombocythemia (ET), has enabled deeper understanding of their pathogenesis. A driver lesion, namely, Janus kinase (JAK)2V617F, calreticulin (CALR) or myeloproliferative leukemia (MPL) gene mutation can be identified in the vast majority of patients. Each of these mutations is associated with distinct clinical features and may modulate the patients’ clinical course, risk of complications, including vascular events, and survival. JAK2V617F appears to be a risk-modifying mutation and has been shown to increase the likelihood of thrombotic events in patients with ET across studies. As such, it has been included in prognostic models and its presence may influence treatment decisions. The association of CALR and MPL mutations with the incidence of vascular events has been less clear. Even more limited information is available on the contribution of additional non-driver lesions to the thrombotic risk. In this review we discuss the available evidence on the role of recurrent mutations in the risk of thrombotic complications in patients with ET and how these mutations weigh into modern prognostic scores.
Similar content being viewed by others
References
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127: 2391–2405.
Titmarsh GJ, Duncombe AS, McMullin MF, O'Rorke M, Mesa R, De Vocht F et al. How common are myeloproliferative neoplasms? A systematic review and meta-analysis. Am J Hematol 2014; 89: 581–587.
Moulard O, Mehta J, Fryzek J, Olivares R, Iqbal U, Mesa RA . Epidemiology of myelofibrosis, essential thrombocythemia, and polycythemia vera in the European Union. Eur J Haematol 2014; 92: 289–297.
Wolanskyj AP, Schwager SM, McClure RF, Larson DR, Tefferi A . Essential thrombocythemia beyond the first decade: life expectancy, long-term complication rates, and prognostic factors. Mayo Clin Proc 2006; 81: 159–166.
Michiels JJ, Berneman Z, Schroyens W, Koudstaal PJ, Lindemans J, Neumann HA et al. Platelet-mediated erythromelalgic, cerebral, ocular and coronary microvascular ischemic and thrombotic manifestations in patients with essential thrombocythemia and polycythemia vera: a distinct aspirin-responsive and coumadin-resistant arterial thrombophilia. Platelets 2006; 17: 528–544.
Casini A, Fontana P, Lecompte TP . Thrombotic complications of myeloproliferative neoplasms: risk assessment and risk-guided management. J Thromb Haemost 2013; 11: 1215–1227.
Passamonti F, Rumi E, Pungolino E, Malabarba L, Bertazzoni P, Valentini M et al. Life expectancy and prognostic factors for survival in patients with polycythemia vera and essential thrombocythemia. Am J Med 2004; 117: 755–761.
Vannucchi AM, Antonioli E, Guglielmelli P, Rambaldi A, Barosi G, Marchioli R et al. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood 2007; 110: 840–846.
Kralovics R, Passamonti F, Buser A, Teo S, Tiedt R, Passweg J et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.
Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.
Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.
James C, Ugo V, Couedic J-PL, Staerk J, Delhommeau Fo, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.
Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007; 356: 459–468.
Pardanani A, Lasho TL, Finke C, Hanson CA, Tefferi A . Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia 2007; 21: 1960–1963.
Passamonti F, Elena C, Schnittger S, Skoda RC, Green AR, Girodon F et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood 2011; 117: 2813–2816.
Abe M, Suzuki K, Inagaki O, Sassa S, Shikama H . A novel MPL point mutation resulting in thrombopoietin-independent activation. Leukemia 2002; 16: 1500–1506.
Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3: e270.
Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476.
Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013; 369: 2391–2405.
Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013; 369: 2379–2390.
Wang WA, Groenendyk J, Michalak M . Calreticulin signaling in health and disease. Int J Biochem Cell Biol 2012; 44: 842–846.
Balligand T, Achouri Y, Pecquet C, Chachoua I, Nivarthi H, Marty C et al. Pathologic activation of thrombopoietin receptor and JAK2-STAT5 pathway by frameshift mutants of mouse calreticulin. Leukemia 2016; 30: 1775–1778.
Araki M, Yang Y, Masubuchi N, Hironaka Y, Takei H, Morishita S et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood 2016; 127: 1307–1316.
Chachoua I, Pecquet C, El-Khoury M, Nivarthi H, Albu RI, Marty C et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood 2016; 127: 1325–1335.
Marty C, Pecquet C, Nivarthi H, El-Khoury M, Chachoua I, Tulliez M et al. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood 2016; 127: 1317–1324.
Elf S, Abdelfattah NS, Chen E, Perales-Paton J, Rosen EA, Ko A et al. Mutant calreticulin requires both its mutant c-terminus and the thrombopoietin receptor for oncogenic transformation. Cancer Discov 2016; 6: 368–381.
Milosevic Feenstra JD, Nivarthi H, Gisslinger H, Leroy E, Rumi E, Chachoua I et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood 2016; 127: 325–332.
Cabagnols X, Favale F, Pasquier F, Messaoudi K, Defour JP, Ianotto JC et al. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients. Blood 2016; 127: 333–342.
Li B, Zhang L, Bai J, Xu Z, Qin T, Zhang Y et al. Non-driver mutations profile identified by a 206-gene NGS panel in patients with primary myelofibrosis and post-polycythaemic/essential thromocythaemia myelofibrosis in a single center from China. Blood 2016; 128: 1942.
Senín A, Fernández C, Bellosillo B, Camacho L, Longaron R, Angona A et al. Role of non-driver mutations and JAK2V617F allele burden in myelofibrotic and acute myeloid transformation of patients with polycythemia vera and essential thrombocythemia. Blood 2016; 128: 1952.
Tefferi A, Lasho TL, Guglielmelli P, Finke CM, Rotunno G, Elala Y et al. Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Adv 2016; 1: 21–30.
Saeidi K . Myeloproliferative neoplasms: current molecular biology and genetics. Crit Rev Oncol Hematol 2016; 98: 375–389.
Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A et al. Mutations and prognosis in primary myelofibrosis. Leukemia 2013; 27: 1861–1869.
Tefferi A, Guglielmelli P, Lasho TL, Rotunno G, Finke C, Mannarelli C et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia 2014; 28: 1494–1500.
Abdel-Wahab O . Genetics of the myeloproliferative neoplasms. Curr Opin Hematol 2011; 18: 117–123.
Luque Paz D, Chauveau A, Boyer F, Buors C, Samaison L, Cottin L et al. Sequential analysis of 18 genes in polycythemia vera and essential thrombocythemia reveals an association between mutational status and clinical outcome. Genes Chromosomes Cancer 2017; 56: 354–362.
Barbui T, Barosi G, Birgegard G, Cervantes F, Finazzi G, Griesshammer M et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol 2011; 29: 761–770.
Carobbio A, Thiele J, Passamonti F, Rumi E, Ruggeri M, Rodeghiero F et al. Risk factors for arterial and venous thrombosis in WHO-defined essential thrombocythemia: an international study of 891 patients. Blood 2011; 117: 5857–5859.
Alvarez-Larran A, Cervantes F, Bellosillo B, Giralt M, Julia A, Hernandez-Boluda JC et al. Essential thrombocythemia in young individuals: frequency and risk factors for vascular events and evolution to myelofibrosis in 126 patients. Leukemia 2007; 21: 1218–1223.
Alvarez-Larran A, Cervantes F, Pereira A, Arellano-Rodrigo E, Perez-Andreu V, Hernandez-Boluda JC et al. Observation versus antiplatelet therapy as primary prophylaxis for thrombosis in low-risk essential thrombocythemia. Blood 2010; 116: 1205–1210, quiz 1387.
Jantunen R, Juvonen E, Ikkala E, Oksanen K, Anttila P, Ruutu T . The predictive value of vascular risk factors and gender for the development of thrombotic complications in essential thrombocythemia. Ann Hematol 2001; 80: 74–78.
Besses C, Cervantes F, Pereira A, Florensa L, Sole F, Hernandez-Boluda JC et al. Major vascular complications in essential thrombocythemia: a study of the predictive factors in a series of 148 patients. Leukemia 1999; 13: 150–154.
Andriani A, Latagliata R, Anaclerico B, Spadea A, Rago A, Di Veroli A et al. Spleen enlargement is a risk factor for thrombosis in essential thrombocythemia: evaluation on 1297 patients. Am J Hematol 2016; 91: 318–321.
Haider M, Gangat N, Hanson C, Tefferi A . Splenomegaly and thrombosis risk in essential thrombocythemia: the mayo clinic experience. Am J Hematol 2016; 91: E296–E297.
Carobbio A, Finazzi G, Antonioli E, Guglielmelli P, Vannucchi AM, Delaini F et al. Thrombocytosis and leukocytosis interaction in vascular complications of essential thrombocythemia. Blood 2008; 112: 3135–3137.
Palandri F, Polverelli N, Catani L, Ottaviani E, Baccarani M, Vianelli N . Impact of leukocytosis on thrombotic risk and survival in 532 patients with essential thrombocythemia: a retrospective study. Ann Hematol 2011; 90: 933–938.
Campbell PJ, MacLean C, Beer PA, Buck G, Wheatley K, Kiladjian JJ et al. Correlation of blood counts with vascular complications in essential thrombocythemia: analysis of the prospective PT1 cohort. Blood 2012; 120: 1409–1411.
Falchi L, Bose P, Newberry KJ, Verstovsek S . Approach to patients with essential thrombocythaemia and very high platelet counts: what is the evidence for treatment? Br J Haematol 2017; 176: 352–364.
Lim Y, Lee JO, Kim SH, Kim JW, Kim YJ, Lee KW et al. Prediction of thrombotic and hemorrhagic events during polycythemia vera or essential thrombocythemia based on leukocyte burden. Thromb Res 2015; 135: 846–851.
Campbell PJ, Scott LM, Buck G, Wheatley K, East CL, Marsden JT et al. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet 2005; 366: 1945–1953.
Arellano-Rodrigo E, Alvarez-Larran A, Reverter JC, Villamor N, Colomer D, Cervantes F . Increased platelet and leukocyte activation as contributing mechanisms for thrombosis in essential thrombocythemia and correlation with the JAK2 mutational status. Haematologica 2006; 91: 169–175.
Falanga A, Marchetti M, Vignoli A, Balducci D, Russo L, Guerini V et al. V617F JAK-2 mutation in patients with essential thrombocythemia: relation to platelet, granulocyte, and plasma hemostatic and inflammatory molecules. Exp Hematol 2007; 35: 702–711.
Falanga A, Marchetti M, Vignoli A, Balducci D, Barbui T . Leukocyte-platelet interaction in patients with essential thrombocythemia and polycythemia vera. Exp Hematol 2005; 33: 523–530.
Coucelo M, Caetano G, Sevivas T, Almeida Santos S, Fidalgo T, Bento C et al. JAK2V617F allele burden is associated with thrombotic mechanisms activation in polycythemia vera and essential thrombocythemia patients. Int J Hematol 2014; 99: 32–40.
Hobbs CM, Manning H, Bennett C, Vasquez L, Severin S, Brain L et al. JAK2V617F leads to intrinsic changes in platelet formation and reactivity in a knock-in mouse model of essential thrombocythemia. Blood 2013; 122: 3787–3797.
Sozer S, Fiel MI, Schiano T, Xu M, Mascarenhas J, Hoffman R . The presence of JAK2V617F mutation in the liver endothelial cells of patients with Budd–Chiari syndrome. Blood 2009; 113: 5246–5249.
Tefferi A, Guglielmelli P, Larson DR, Finke C, Wassie EA, Pieri L et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 2014; 124: 2507–2513, quiz 2615.
Finazzi G, Rambaldi A, Guerini V, Carobbo A, Barbui T . Risk of thrombosis in patients with essential thrombocythemia and polycythemia vera according to JAK2 V617F mutation status. Haematologica 2007; 92: 135–136.
Carobbio A, Finazzi G, Antonioli E, Guglielmelli P, Vannucchi AM, Dellacasa CM et al. JAK2V617F allele burden and thrombosis: a direct comparison in essential thrombocythemia and polycythemia vera. Exp Hematol 2009; 37: 1016–1021.
Giona F, Teofili L, Moleti ML, Martini M, Palumbo G, Amendola A et al. Thrombocythemia and polycythemia in patients younger than 20 years at diagnosis: clinical and biologic features, treatment, and long-term outcome. Blood 2012; 119: 2219–2227.
Cho YU, Chi HS, Lee EH, Jang S, Park CJ, Seo EJ . Comparison of clinicopathologic findings according to JAK2 V617F mutation in patients with essential thrombocythemia. Int J Hematol 2009; 89: 39–44.
Wolanskyj AP, Lasho TL, Schwager SM, McClure RF, Wadleigh M, Lee SJ et al. JAK2 mutation in essential thrombocythaemia: clinical associations and long-term prognostic relevance. Br J Haematol 2005; 131: 208–213.
Antonioli E, Guglielmelli P, Pancrazzi A, Bogani C, Verrucci M, Ponziani V et al. Clinical implications of the JAK2 V617F mutation in essential thrombocythemia. Leukemia 2005; 19: 1847–1849.
Palandri F, Catani L, Testoni N, Ottaviani E, Polverelli N, Fiacchini M et al. Long-term follow-up of 386 consecutive patients with essential thrombocythemia: safety of cytoreductive therapy. Am J Hematol 2009; 84: 215–220.
Cheung B, Radia D, Pantelidis P, Yadegarfar G, Harrison C . The presence of the JAK2 V617F mutation is associated with a higher haemoglobin and increased risk of thrombosis in essential thrombocythaemia. Br J Haematol 2006; 132: 244–245.
Chim CS, Sim JP, Chan CC, Kho BC, Chan JC, Wong LG et al. Impact of JAK2V617F mutation on thrombosis and myeloid transformation in essential thrombocythemia: a multivariate analysis by Cox regression in 141 patients. Hematology 2010; 15: 187–192.
Qin Y, Wang X, Zhao C, Wang C, Yang Y . The impact of JAK2V617F mutation on different types of thrombosis risk in patients with essential thrombocythemia: a meta-analysis. Int J Hematol 2015; 102: 170–180.
Ziakas PD . Effect of JAK2 V617F on thrombotic risk in patients with essential thrombocythemia: measuring the uncertain. Haematologica 2008; 93: 1412–1414.
Lussana F, Dentali F, Abbate R, d'Aloja E, D'Angelo A, De Stefano V et al. Screening for thrombophilia and antithrombotic prophylaxis in pregnancy: guidelines of the Italian Society for Haemostasis and Thrombosis (SISET). Thromb Res 2009; 124: e19–e25.
Dahabreh IJ, Zoi K, Giannouli S, Zoi C, Loukopoulos D, Voulgarelis M . Is JAK2 V617F mutation more than a diagnostic index? A meta-analysis of clinical outcomes in essential thrombocythemia. Leuk Res 2009; 33: 67–73.
Kittur J, Knudson RA, Lasho TL, Finke CM, Gangat N, Wolanskyj AP et al. Clinical correlates of JAK2V617F allele burden in essential thrombocythemia. Cancer 2007; 109: 2279–2284.
Borowczyk M, Wojtaszewska M, Lewandowski K, Gil L, Lewandowska M, Lehmann-Kopydlowska A et al. The JAK2 V617F mutational status and allele burden may be related with the risk of venous thromboembolic events in patients with Philadelphia-negative myeloproliferative neoplasms. Thromb Res 2015; 135: 272–280.
Palandri F, Latagliata R, Polverelli N, Tieghi A, Crugnola M, Martino B et al. Mutations and long-term outcome of 217 young patients with essential thrombocythemia or early primary myelofibrosis. Leukemia 2015; 29: 1344–1349.
Alvarez-Larran A, Bellosillo B, Pereira A, Kerguelen A, Hernandez-Boluda JC, Martinez-Aviles L et al. JAK2V617F monitoring in polycythemia vera and essential thrombocythemia: clinical usefulness for predicting myelofibrotic transformation and thrombotic events. Am J Hematol 2014; 89: 517–523.
De Stefano V, Za T, Rossi E, Vannucchi AM, Ruggeri M, Elli E et al. Increased risk of recurrent thrombosis in patients with essential thrombocythemia carrying the homozygous JAK2 V617F mutation. Ann Hematol 2010; 89: 141–146.
Sekhar M, McVinnie K, Burroughs AK . Splanchnic vein thrombosis in myeloproliferative neoplasms. Br J Haematol 2013; 162: 730–747.
Dentali F, Squizzato A, Brivio L, Appio L, Campiotti L, Crowther M et al. JAK2V617F mutation for the early diagnosis of Ph- myeloproliferative neoplasms in patients with venous thromboembolism: a meta-analysis. Blood 2009; 113: 5617–5623.
Pardanani A, Lasho TL, Hussein K, Schwager SM, Finke CM, Pruthi RK et al. JAK2V617F mutation screening as part of the hypercoagulable work-up in the absence of splanchnic venous thrombosis or overt myeloproliferative neoplasm: assessment of value in a series of 664 consecutive patients. Mayo Clin Proc 2008; 83: 457–459.
Smalberg JH, Arends LR, Valla DC, Kiladjian JJ, Janssen HL, Leebeek FW . Myeloproliferative neoplasms in Budd–Chiari syndrome and portal vein thrombosis: a meta-analysis. Blood 2012; 120: 4921–4928.
Shetty S, Kulkarni B, Pai N, Mukundan P, Kasatkar P, Ghosh K . JAK2 mutations across a spectrum of venous thrombosis cases. Am J Clin Pathol 2010; 134: 82–85.
Torregrosa JM, Ferrer-Marin F, Lozano ML, Moreno MJ, Martinez C, Anton AI et al. Impaired leucocyte activation is underlining the lower thrombotic risk of essential thrombocythaemia patients with CALR mutations as compared with those with the JAK2 mutation. Br J Haematol 2016; 172: 813–815.
Rotunno G, Mannarelli C, Guglielmelli P, Pacilli A, Pancrazzi A, Pieri L et al. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood 2014; 123: 1552–1555.
Tefferi A, Wassie EA, Lasho TL, Finke C, Belachew AA, Ketterling RP et al. Calreticulin mutations and long-term survival in essential thrombocythemia. Leukemia 2014; 28: 2300–2303.
Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood 2014; 123: 1544–1551.
Fu R, Xuan M, Zhou Y, Sun T, Bai J, Cao Z et al. Analysis of calreticulin mutations in Chinese patients with essential thrombocythemia: clinical implications in diagnosis, prognosis and treatment. Leukemia 2014; 28: 1912–1914.
Tefferi A, Wassie EA, Guglielmelli P, Gangat N, Belachew AA, Lasho TL et al. Type 1 versus type 2 calreticulin mutations in essential thrombocythemia: a collaborative study of 1027 patients. Am J Hematol 2014; 89: E121–E124.
Pietra D, Rumi E, Ferretti VV, Di Buduo CA, Milanesi C, Cavalloni C et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia 2016; 30: 431–438.
De Stefano V, Qi X, Betti S, Rossi E . Splanchnic vein thrombosis and myeloproliferative neoplasms: molecular-driven diagnosis and long-term treatment. Thromb Haemost 2016; 115: 240–249.
Vannucchi AM, Antonioli E, Guglielmelli P, Pancrazzi A, Guerini V, Barosi G et al. Characteristics and clinical correlates of MPL 515W>L/K mutation in essential thrombocythemia. Blood 2008; 112: 844–847.
Rumi E, Pietra D, Guglielmelli P, Bordoni R, Casetti I, Milanesi C et al. Acquired copy-neutral loss of heterozygosity of chromosome 1p as a molecular event associated with marrow fibrosis in MPL-mutated myeloproliferative neoplasms. Blood 2013; 121: 4388–4395.
Beer PA, Campbell PJ, Scott LM, Bench AJ, Erber WN, Bareford D et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood 2008; 112: 141–149.
Gangat N, Wassie EA, Lasho TL, Finke C, Ketterling RP, Hanson CA et al. Mutations and thrombosis in essential thrombocythemia: prognostic interaction with age and thrombosis history. Eur J Haematol 2015; 94: 31–36.
Vainchenker W, Kralovics R . Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood 2017; 129: 667–679.
Kang MG, Choi HW, Lee JH, Choi YJ, Choi HJ, Shin JH et al. Coexistence of JAK2 and CALR mutations and their clinical implications in patients with essential thrombocythemia. Oncotarget 2016; 7: 57036–57049.
Shen H, Chao H, Ding Z, Feng Y, Cen J, Pan J et al. CALR and ASXL1 mutation analysis in 190 patients with essential thrombocythemia. Leuk Lymphoma 2015; 56: 820–822.
Yonal-Hindilerden I, Daglar-Aday A, Akadam-Teker B, Yilmaz C, Nalcaci M, Yavuz AS et al. Prognostic significance of ASXL1, JAK2V617F mutations and JAK2V617F allele burden in Philadelphia-negative myeloproliferative neoplasms. J Blood Med 2015; 6: 157–175.
Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC, Grinfeld J et al. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med 2015; 372: 601–612.
Barbui T, Finazzi G, Carobbio A, Thiele J, Passamonti F, Rumi E et al. Development and validation of an International Prognostic Score of thrombosis in World Health Organization-essential thrombocythemia (IPSET-thrombosis). Blood 2012; 120: 5128–5133, quiz 5252.
Fu R, Xuan M, Lv C, Zhang L, Li H, Zhang X et al. External validation and clinical evaluation of the International Prognostic Score of Thrombosis for Essential Thrombocythemia (IPSET-thrombosis) in a large cohort of Chinese patients. Eur J Haematol 2014; 92: 502–509.
Finazzi G, Carobbio A, Guglielmelli P, Cavalloni C, Salmoiraghi S, Vannucchi AM et al. Calreticulin mutation does not modify the IPSET score for predicting the risk of thrombosis among 1150 patients with essential thrombocythemia. Blood 2014; 124: 2611–2612.
Barbui T, Vannucchi AM, Buxhofer-Ausch V, De Stefano V, Betti S, Rambaldi A et al. Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocythemia. Blood Cancer J 2015; 5: e369.
Haider M, Gangat N, Lasho T, Abou Hussein AK, Elala YC, Hanson C et al. Validation of the revised international prognostic score of thrombosis for essential thrombocythemia (IPSET-thrombosis) in 585 Mayo clinic patients. Am J Hematol 2016; 91: 390–394.
Alvarez-Larran A, Pereira A, Guglielmelli P, Hernandez-Boluda JC, Arellano-Rodrigo E, Ferrer-Marin F et al. Antiplatelet therapy versus observation in low-risk essential thrombocythemia with a CALR mutation. Haematologica 2016; 101: 926–931.
Sun C, Zhou X, Zou ZJ, Guo HF, Li JY, Qiao C . Clinical manifestation of calreticulin gene mutations in essential thrombocythemia without Janus kinase 2 and MPL mutations: a Chinese Cohort Clinical Study. Chin Med J 2016; 129: 1778–1783.
Bertozzi I, Peroni E, Coltro G, Bogoni G, Cosi E, Santarossa C et al. Thrombotic risk correlates with mutational status in true essential thrombocythemia. Eur J Clin Invest 2016; 46: 683–689.
Okabe M, Yamaguchi H, Usuki K, Kobayashi Y, Kawata E, Kuroda J et al. Clinical features of Japanese polycythemia vera and essential thrombocythemia patients harboring CALR, JAK2V617F, JAK2Ex12del, and MPLW515L/K mutations. Leuk Res 2016; 40: 68–76.
Acknowledgements
This work was supported in part by a Cancer Center Support Grant to MD Anderson Cancer Center (P30 CA016672) from the National Cancer Institute.
Author contributions
All authors conceived the research, collected, analyzed and interpreted the literature, wrote and approved the final version of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Falchi, L., Kantarjian, H. & Verstovsek, S. Assessing the thrombotic risk of patients with essential thrombocythemia in the genomic era. Leukemia 31, 1845–1854 (2017). https://doi.org/10.1038/leu.2017.150
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/leu.2017.150
- Springer Nature Limited
This article is cited by
-
Cancer-associated thrombosis in hematologic malignancies
International Journal of Hematology (2024)
-
Different CALR mutation subtypes in essential thrombocythemia and primary myelofibrosis patients without JAK2 mutation
memo - Magazine of European Medical Oncology (2020)