Skip to main content
Log in

Loss of chromosomes is the primary event in near-haploid and low-hypodiploid acute lymphoblastic leukemia

  • Letter to the Editor
  • Published:
Leukemia Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

References

  1. Heerema NA, Nachman JB, Sather HN, Sensel MG, Lee MK, Hutchinson R et al. Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the children’s cancer group. Blood 1999; 94: 4036–4045.

    CAS  PubMed  Google Scholar 

  2. Harrison CJ, Moorman AV, Broadfield ZJ, Cheung KL, Harris RL, Reza Jalali G et al. Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br J Haematol 2004; 125: 552–559.

    Article  PubMed  Google Scholar 

  3. Nachman JB, Heerema NA, Sather H, Camitta B, Forestier E, Harrison CJ et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood 2007; 110: 1112–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mitelman F, Johansson B, Mertens F . Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer, http://cgap.nci.nih.gov/Chromosomes/Mitelman.

  5. Pui C-H, Carroll AJ, Raimondi SC, Land VJ, Crist WM, Shuster JJ et al. Clinical presentation, karyotypic characterization, and treatment outcome of childhood acute lymphoblastic leukemia with a near-haploid or hypodiploid less than 45 line. Blood 1990; 75: 1170–1177.

    CAS  PubMed  Google Scholar 

  6. Charrin C, Thomas X, Ffrench M, Le QH, Andrieux J, Mozziconacci MJ et al. A report from the LALA-94 and LALA-SA groups on hypodiploidy with 30 to 39 chromosomes and near-triploidy: 2 possible expressions of a sole entity conferring poor prognosis in adult acute lymphoblastic leukemia (ALL). Blood 2004; 104: 2444–2451.

    Article  CAS  PubMed  Google Scholar 

  7. Moorman AV, Harrison CJ, Buck GA, Richards SM, Secker-Walker LM, Martineau M et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood 2007; 109: 3189–3197.

    Article  CAS  PubMed  Google Scholar 

  8. Forestier E, Johansson B, Gustafsson G, Borgstrom G, Kerndrup G, Johannsson J et al. Prognostic impact of karyotypic findings in childhood acute lymphoblastic leukaemia: a Nordic series comparing two treatment periods. For the Nordic Society of Paediatric Haematology and Oncology (NOPHO) Leukaemia Cytogenetic Study Group. Br J Haematol 2000; 110: 147–153.

    Article  CAS  PubMed  Google Scholar 

  9. Mandahl N, Johansson B, Mertens F, Mitelman F . Disease-associated patterns of disomic chromosomes in hyperhaploid neoplasms. Genes Chromosomes Cancer 2012; 51: 536–544.

    Article  CAS  PubMed  Google Scholar 

  10. Olsson L, Paulsson K, Bovee JV, Nord KH . Clonal evolution through loss of chromosomes and subsequent polyploidization in chondrosarcoma. PLoS One 2011; 6: e24977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Onodera N, McCabe NR, Nachman JB, Johnson FL, Le Beau MM, Rowley JD et al. Hyperdiploidy arising from near-haploidy in childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 1992; 4: 331–336.

    Article  CAS  PubMed  Google Scholar 

  12. Ma SK, Chan GC, Wan TS, Lam CK, Ha SY, Lau YL et al. Near-haploid common acute lymphoblastic leukaemia of childhood with a second hyperdiploid line: a DNA ploidy and fluorescence in-situ hybridization study. Br J Haematol 1998; 103: 750–755.

    Article  CAS  PubMed  Google Scholar 

  13. Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 2004; 64: 3087–3095.

    Article  CAS  PubMed  Google Scholar 

  14. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764.

    Article  CAS  PubMed  Google Scholar 

  15. McDermott KM, Zhang J, Holst CR, Kozakiewicz BK, Singla V, Tlsty TD . p16(INK4a) prevents centrosome dysfunction and genomic instability in primary cells. PLoS Biol 2006; 4: e51.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Swedish Cancer Society, the Swedish Childhood Cancer Foundation and the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Paulsson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safavi, S., Forestier, E., Golovleva, I. et al. Loss of chromosomes is the primary event in near-haploid and low-hypodiploid acute lymphoblastic leukemia. Leukemia 27, 248–250 (2013). https://doi.org/10.1038/leu.2012.227

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.227

  • Springer Nature Limited

This article is cited by

Navigation