Skip to main content

Advertisement

Log in

IFN-α production by human mononuclear cells infected with varicella-zoster virus through TLR9-dependent and -independent pathways

  • Research Article
  • Published:
Cellular & Molecular Immunology Submit manuscript

Abstract

Understanding the defense mechanisms of the host of an organism is important for infection control. In previous studies, we demonstrated that interferon-α (IFN-α), but not IL-12, was produced by human peripheral blood mononuclear cells infected with varicella-zoster virus (VZV). Here, we investigated what kind of cell(s) and which signal molecule(s) are involved in IFN-α production. Using cell isolation and ELISA, we found that plasmacytoid dendritic cells (pDCs) were responsible for IFN-α production during VZV infection. We also found that Toll-like receptor 9 (TLR9) was involved in VZV-induced IFN-α production because inhibitory CpG oligodeoxynucleotide inhibited IFN-α production. UV-inactivated VZV-induced IFN-α production was lower than that of active VZV, indicating another TLR9-independent pathway. Further studies demonstrated that double-stranded RNA-dependent protein kinase, but not DNA-dependent protein kinase was involved in VZV-induced IFN-α production. Together, these results suggest that pDCs play an important role in IFN-α production during VZV infection through TLR9-dependent and -independent pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA . Phylogenetic perspectives in innate immunity. Science 1999; 284: 1313–1318.

    Article  CAS  PubMed  Google Scholar 

  2. Barton GM, Medzhitov R . Control of adaptive immune responses by Toll-like receptors. Curr Opin Immunol 2002; 14: 380–383.

    Article  CAS  PubMed  Google Scholar 

  3. O'Doherty U, Peng UM, Gezelter S, Swiggard WJ, Betjes M, Bhardwaj N et al. Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 1994; 82: 487–493.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Robinson SP, Patterson S, English N, Davies D, Knight SC, Reid CD . Human peripheral blood contains two distinct lineages of dendritic cells. Eur J Immunol 1999; 29: 2769–2778.

    Article  CAS  PubMed  Google Scholar 

  5. MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN . Characterization of human blood dendritic cell subsets. Blood 2002; 100: 4512–4520.

    Article  CAS  PubMed  Google Scholar 

  6. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YL et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767–811.

    Article  CAS  PubMed  Google Scholar 

  7. Ueda Y, Hagihara M, Okamoto A, Higuchi A, Tanabe A, Hirabayashi K et al. Frequencies of dendritic cells (myeloid DC and plasmacytoid DC) and their ratio reduced in pregnant women: comparison with umbilical cord blood and normal healthy adults. Hum Immunol 2003; 64: 1144–1151.

    Article  PubMed  Google Scholar 

  8. Chehimi J, Campbell DE, Azzoni L, Bacheller D, Papasavvas E, Jerandi G et al. Persistent decreases in blood plasmacytoid dendritic cell number and function despite effective highly active antiretroviral therapy and increased blood myeloid dendritic cells in HIV-infected individuals. J Immunol 2002; 168: 4796–4801.

    Article  CAS  PubMed  Google Scholar 

  9. McKenna K, Beignon AS, Bhardwaj N . Plasmacytoid dendritic cells: linking innate and adaptive immunity. J Virol 2005; 79: 17–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 1999; 5: 919–923.

    Article  CAS  PubMed  Google Scholar 

  11. Feldman SB, Ferraro M, Zheng HM, Patel N, Gould-Fogerite S, Fitzgerald-Bocarsly P . Viral induction of low frequency interferon-alpha producing cells. Virology 1994; 204: 1–7.

    Article  CAS  PubMed  Google Scholar 

  12. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 1999; 284: 1835–1837.

    Article  CAS  PubMed  Google Scholar 

  13. Straus SE, Aulakh HS, Ruyechan WT, Hay J, Casey TA, Vande Woude GF et al. Structure of varicella-zoster virus DNA. J Virol 1981; 40: 516–525.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu HR, Chen RF, Hong KC, Bong CN, Lee WI, Kuo HC et al. IL-12 independent polarization of Th1 reaction in human mononuclear cells with varicella-zoster virus infection. Eur J Immunol 2005; 35: 3664–3672.

    Article  CAS  PubMed  Google Scholar 

  15. Yu HR, Chang JC, Chen RF, Chuang H, Hong KC, Wang L et al. Different antigens trigger different Th1/Th2 reactions in neonatal mononuclear cells (MNCs) relating to T-bet/GATA-3 expression. J Leukoc Biol 2003; 74: 952–958.

    Article  CAS  PubMed  Google Scholar 

  16. Yang KD, Liou WY, Lee CS, Chu ML, Shaio MF . Effects of phenobarbitol on leukocyte activation: membrane potential, actin polymerization, chemotaxis, respiratory burst, cytokine production, and lymphocyte proliferation. J Leukoc Biol 1992; 52: 151–156.

    Article  CAS  PubMed  Google Scholar 

  17. Ashman RF, Lenert P . Structural requirements and applications of inhibitory oligodeoxyribonucleotides. Immunol Res 2007; 39: 4–14.

    Article  CAS  PubMed  Google Scholar 

  18. Malmgaard L, Melchjorsen J, Bowie AG, Mogensen SC, Paludan SR . Viral activation of macrophages through TLR-dependent and -independent pathways. J Immunol 2004; 173: 6890–6898.

    Article  CAS  PubMed  Google Scholar 

  19. Der SD, Lau AS . Involvement of the double-stranded-RNA-dependent kinase PKR in interferon expression and interferon-mediated antiviral activity. Proc Natl Acad Sci USA 1995; 92: 8841–8845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chu WM, Ostertag D, Li ZW, Chang L, Chen Y, Hu Y et al. JNK2 and IKKbeta are required for activating the innate response to viral infection. Immunity 1999; 11: 721–731.

    Article  CAS  PubMed  Google Scholar 

  21. Akira S, Hemmi H . Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 2003; 85: 85–95.

    Article  CAS  PubMed  Google Scholar 

  22. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303: 1526–1529.

    Article  CAS  PubMed  Google Scholar 

  23. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C . Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004; 303: 1529–1531.

    Article  CAS  PubMed  Google Scholar 

  24. Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 2004; 101: 5598–5603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F et al. Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J Exp Med 2001; 194: 863–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cohen JI, Brunell PA, Straus SE, Krause PR . Recent advances in varicella-zoster virus infection. Ann Intern Med 1999; 130: 922–932.

    Article  CAS  PubMed  Google Scholar 

  27. Lin TY, Huang YC, Ning HC, Hsueh C . Oral acyclovir prophylaxis of varicella after intimate contact. Pediatr Infect Dis 1997; 16: 1162–1165.

    Article  CAS  Google Scholar 

  28. Grose C . Variation on a theme by Fenner: the pathogenesis of chickenpox. Pediatrics 1981; 68: 735–737.

    CAS  PubMed  Google Scholar 

  29. Ozaki T, Ichikawa T, Matsui Y, Nagai T, Asano Y, Yamanishi K et al. Viremic phase in nonimmunocompromised children with varicella. J Pediatr 1984; 104: 85–87.

    Article  CAS  PubMed  Google Scholar 

  30. Ku CC, Zerboni L, Ito H, Graham BS, Wallace M, Arvin AM . Varicella-zoster virus transfer to skin by T Cells and modulation of viral replication by epidermal cell interferon-alpha. J Exp Med 2004; 200: 917–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ku CC, Besser J, Abendroth A, Grose C, Arvin AM . Varicella-Zoster virus pathogenesis and immunobiology: new concepts emerging from investigations with the SCIDhu mouse model. J Virol 2005; 79: 2651–2658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hochrein H, Schlatter B, O'Keeffe M, Wagner C, Schmitz F, Schiemann M et al. Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways. Proc Natl Acad Sci USA 2004; 101: 11416–11421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heim MH . RIG-I: an essential regulator of virus-induced interferon production. J Hepatol 2005; 42: 431–433.

    Article  CAS  PubMed  Google Scholar 

  34. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 2004; 5: 730–737.

    Article  CAS  PubMed  Google Scholar 

  35. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006; 441: 101–105.

    Article  CAS  PubMed  Google Scholar 

  36. Wagner H, Bauer S . All is not Toll: new pathways in DNA recognition. J Exp Med 2006; 203: 265–268.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Akira S, Uematsu S, Takeuchi O . Pathogen recognition and innate immunity. Cell 2006; 124: 783–801.

    Article  CAS  PubMed  Google Scholar 

  38. Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 2006: 7: 40–48.

    Article  CAS  PubMed  Google Scholar 

  39. Okabe Y, Kawane K, Akira S, Taniguchi T, Nagata S . Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J Exp Med 2005; 202: 1333–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chu W, Gong X, Li Z, Takabayashi K, Ouyang H, Chen Y et al. DNA-PKcs is required for activation of innate immunity by immunostimulatory DNA. Cell 2000; 103: 909–918.

    Article  CAS  PubMed  Google Scholar 

  41. Dragoi AM, Fu X, Ivanov S, Zhang P, Sheng L, Wu D et al. DNA-PKcs, but not TLR9, is required for activation of Akt by CpG-DNA. EMBO J 2005; 24: 779–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Karpova AY, Trost M, Murray JM, Cantley LC, Howley PM . Interferon regulatory factor-3 is an in vivo target of DNA-PK. Proc Natl Acad Sci USA 2002; 99: 2818–2823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hemmi H, Kaisho T, Takeda K, Akira S . The roles of Toll-like receptor 9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. J Immunol 2003; 170: 3059–3064.

    Article  CAS  PubMed  Google Scholar 

  44. Ishii KJ, Takeshita F, Gursel I, Gursel M, Conover J, Nussenzweig A et al. Potential role of phosphatidylinositol 3 kinase, rather than DNA-dependent protein kinase, in CpG DNA-induced immune activation. J Exp Med 2002; 196: 269–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hornung V, Schlender J, Guenthner-Biller M, Rothenfusser S, Endres S, Conzelmann KK et al. Replication-dependent potent IFN-alpha induction in human plasmacytoid dendritic cells by a single-stranded RNA virus. J Immunol 2004; 173: 5935–5943.

    Article  CAS  PubMed  Google Scholar 

  46. Jacobs BL, Langland JO . When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology 1996; 219: 339–349.

    Article  CAS  PubMed  Google Scholar 

  47. Carpentier PA, Williams BR, Miller SD . Distinct roles of protein kinase R and Toll-like receptor 3 in the activation of astrocytes by viral stimuli. Glia 2007; 55: 239–252.

    Article  PubMed  Google Scholar 

  48. Wang JP, Kurt-Jones EA, Shin OS, Manchak MD, Levin MJ, Finberg RW . Varicella-zoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. J Virol 2005; 79: 12658–12666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grants NSC 94-2314-B-182A-101 (H R Yu) and NSC 98-2314-B-182A-004-MY3 (H R Yu) from the National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuender D Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, HR., Huang, HC., Kuo, HC. et al. IFN-α production by human mononuclear cells infected with varicella-zoster virus through TLR9-dependent and -independent pathways. Cell Mol Immunol 8, 181–188 (2011). https://doi.org/10.1038/cmi.2010.84

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.84

  • Springer Nature Limited

Keywords

This article is cited by

Navigation