Skip to main content

Advertisement

Log in

Graft Manipulation

Selective, efficient modulation of activated CD4+ αβT cells by the novel humanized antibody GZ-αβTCR targeting human αβTCR

  • Original Article
  • Published:
Bone Marrow Transplantation Submit manuscript

Abstract

Allograft rejection and immunosuppression are two major issues in transplantation medicine. The specific targeting of alloreactive T cells, the initiators and promoters of allograft rejection, would be a promising strategy to reduce unwanted T-cell responses and side effects of lifelong immunosuppression. The novel humanized monoclonal antibody GZ-αβTCR, specific for the human αβT-cell receptor, was tested in vitro and in vivo for its specificity and efficacy to modulate the αβT-cell compartment. GZ-αβTCR moderately induced apoptosis in resting αβT cells in vitro, an effect considerably amplified in activated T cells. A single dose of GZ-αβTCR significantly reduced human CD45+CD3+ T cells in vivo, with a preferential modulation of CD4+ αβT cells. Importantly, naive T cells, the T-cell subset from which alloreactivity emanates, were significantly reduced. Simultaneously, a significant, compensatory increase of γδ T cells was observed in vitro and in vivo in both humanized mouse models examined. GZ-αβTCR did not induce cytokines and was well tolerated. Thus, specificity and high efficacy make GZ-αβTCR a powerful tool to selectively eliminate putatively detrimental T-cell subsets, a major goal in transplantation medicine. At the same time, GZ-αβTCR spares γδ and natural killer cells, thus leaving the recipient’s immune system competent for cell-mediated immunoregulation and cell-mediated immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Harrison JH, Merrill JP, Murray JE . Renal homotransplantations in identical twins. Surg Forum 1956; 6: 432–436.

    CAS  PubMed  Google Scholar 

  2. Chen G, Dong JH . Individualized immunosuppression: new strategies from pharmacokinetics, pharmacodynamics and pharmacogenomics. Hepatobiliary Pancreat Dis Int 2005; 4: 332–338.

    CAS  PubMed  Google Scholar 

  3. Odorico JS, Sollinger HW . Technical and immunosuppressive advances in transplantation for insulin-dependent diabetes mellitus. World J Surg 2002; 26: 194–211.

    Article  Google Scholar 

  4. Shapiro R, Young JB, Milford EL, Trotter JF, Bustami RT, Leichtman AB . Immunosuppression: evolution in practice and trends, 1993–2003. Am J Transplant 2005; 5: 874–886.

    Article  Google Scholar 

  5. Starzl TE, Koep LJ, Halgrimson CG, Hood J, Schroter GP, Porter KA et al. Fifteen years of clinical liver transplantation. Gastroenterology 1979; 77: 375–388.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Soulillou JP, Giral M . Controlling the incidence of infection and malignancy by modifying immunosuppression. Transplantation 2001; 72: S89–S93.

    Article  CAS  Google Scholar 

  7. Gonwa TA, Mai ML, Melton LB, Hays SR, Goldstein RM, Levy MF et al. End-stage renal disease (ESRD) after orthotopic liver transplantation (OLTX) using calcineurin-based immunotherapy: risk of development and treatment. Transplantation 2001; 72: 1934–1939.

    Article  CAS  Google Scholar 

  8. Ojo AO, Held PJ, Port FK, Wolfe RA, Leichtman AB, Young EW et al. Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med 2003; 349: 931–940.

    Article  CAS  Google Scholar 

  9. Post DJ, Douglas DD, Mulligan DC . Immunosupression in liver transplantation. Liver Transpl 2005; 11: 1307–1314.

    Article  Google Scholar 

  10. Page EK, Dar WA, Knechtle SJ . Biologics in organ transplantation. Transpl Int 2012; 25: 707–719.

    Article  CAS  Google Scholar 

  11. Kanda J, Lopez RD, Rizzieri DA . Alemtuzumab for the prevention and treatment of graft-versus-host disease. Int J Hematol 2011; 93: 586–593.

    Article  CAS  Google Scholar 

  12. Gaber AO, Monaco AP, Russell JA, Lebranchu Y, Mohty M . Rabbit antithymocyte globulin (thymoglobulin): 25 years and new frontiers in solid organ transplantation and haematology. Drugs 2012; 70: 691–732.

    Article  Google Scholar 

  13. Friend PJ, Hale G, Waldmann H, Gore S, Thiru S, Joysey V et al. Campath-1M – prophylactic use after kidney transplantation. A randomized controlled clinical trial. Transplantation 1989; 48: 248–253.

    Article  CAS  Google Scholar 

  14. van den Hoogen MW, Hilbrands LB . Use of monoclonal antibodies in renal transplantation. Immunotherapy 2011; 3: 871–880.

    Article  CAS  Google Scholar 

  15. Chatenoud L, Ferran C, Legendre C, Thouard I, Merite S, Reuter A et al. In vivo cell activation following OKT3 administration. Systemic cytokine release and modulation by corticosteroids. Transplantation 1990; 49: 697–702.

    Article  CAS  Google Scholar 

  16. Constanzo-Nordin MR . Cardiopulmonary effects of OKT3: determinants of hypotension, pulmonary edema, and cardiac dysfunction. Transplant Proc 1993; 25 (2 Suppl 1): 21–24.

    Google Scholar 

  17. Martin MA, Massanari RM, Nghiem DD, Smith JL, Corry RJ . Nosocomial aseptic meningitis associated with administration of OKT3. JAMA 1988; 259: 2002–2005.

    Article  CAS  Google Scholar 

  18. Cherikh WS, Kauffman HM, McBride MA, Maghirang J, Swinnen LJ, Hanto DW . Association of the type of induction immunosuppression with posttransplant lymphoproliferative disorder, graft survival, and patient survival after primary kidney transplantation. Transplantation 2003; 76: 1289–1293.

    Article  CAS  Google Scholar 

  19. King M, Pearson T, Shultz LD, Leif J, Bottino R, Trucco M et al. A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene. Clin Immunol 2008; 126: 303–314.

    Article  CAS  Google Scholar 

  20. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic cells. J Immunol 2005; 174: 6477–6489.

    Article  CAS  Google Scholar 

  21. Ito R, Katano I, Kawai K, Hirata H, Ogura T, Kamisako T et al. Highly sensitive model for xenogeneic GVHD using severe immunodeficient NOG mice. Transplantation 2009; 87: 1654–1658.

    Article  CAS  Google Scholar 

  22. Teschner D, Distler E, Wehler D, Frey M, Marandiuc D, Langeveld K et al. Depletion of naïve T cells using clinical grade magnetic CD45RA beads: a new approach for GVHD prophylaxis. Bone Marrow Transplant 2014; 49: 138–144.

    Article  CAS  Google Scholar 

  23. Bleakley M, Heimfeld S, Jones LA, Turtle C, Krause D, Riddell SR et al. Engineering human peripheral blood stem cell grafts that are depleted of naïve T cells and retain functional pathogen-specific memory T cells. Biol Blood Marrow Transplant 2014; 20: 705–716.

    Article  CAS  Google Scholar 

  24. Covassin L, Langing J, Abdi R, Langevin DL, Phillips NE, Shultz LD et al. Human peripheral blood CD4 T cell-engrafted non-obese diabetic-scid IL2rγ(null) H2-Ab1 (tm1Gru) Tg (human leucocyte antigen D-related 4) mice: a mouse model of human allogeneic graft-versus-host disease. Clin Exp Immunol 2011; 166: 269–280.

    Article  CAS  Google Scholar 

  25. Brehm MA, Shultz LD . Human allograft rejection in humanized mice: a historical perspective. Cell Mol Immunol 2012; 9: 225–231.

    Article  CAS  Google Scholar 

  26. King MA, Covassin L, Brehm MA, Racki W, Pearson T, Leif J et al. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol 2009; 157: 104–118.

    Article  CAS  Google Scholar 

  27. Yoshino S, Cleland LG . Depletion of alpha/beta T cells by a monoclonal antibody against the alpha/beta T cell receptor suppresses established adjuvant arthritis, but not established collagen-induced arthritis in rats. J Exp Med 1992; 175: 907–915.

    Article  CAS  Google Scholar 

  28. Jung S, Kramer S, Schluesener HJ, Hünig T, Toyka K, Hartung HP . Prevention and therapy of experimental autoimmune neuritis by an antibody against T cell receptors-alpha/beta. J Immunol 1992; 148: 3768–3775.

    CAS  PubMed  Google Scholar 

  29. Heidecke CD, Hancock WW, Westerholt S, Sewczik T, Jakobs F, Zantl N et al. [alpha]/[beta]-T cell receptor-directed therapy in rat allograft recipients: long-term survival of cardiac allografts after pre-treatment with R73 mAb is associated with upregulation oh Th2-type cytokines. Transplantation 1996; 61: 948–956.

    Article  CAS  Google Scholar 

  30. Scharpf J, Strome M, Siemionow M . Immunomodulation with anti-αβ T-cell receptor monoclonal antibodies in combination with Cyclosporine A improves regeneration in nerve allografts. Microsurgery 2006; 26: 599–607.

    Article  Google Scholar 

  31. Newell KA, Gang H, Hart J, Thislewaite RJ . Treatment with either anti-CD4 or anti-CD8 monoclonal antibodies blocks αβ-T cell-mediated rejection of intestinal allografts in mice. Transplantation 1996; 64: 959–965.

    Article  Google Scholar 

  32. Schorlemmer HU, Dickneite G, Kurrle R, Seiler FR . Synergistic effects of 15-deoxyspergualin with cyclosporine and the TCR-targeted monoclonal antibody R73 to induce specific unresponsiveness to skin allografts in rats. Transplant Proc 1995; 27: 414–416.

    CAS  PubMed  Google Scholar 

  33. Heidecke CD, Zantl N, Maier S, Varzaru A, Hager B, Kupiec-Weglinski J et al. Induction of long-term renal allograft survival by pretransplant T cell receptor-αβ-targeted therapy. Transplantation 1999; 61: 336–339.

    Article  Google Scholar 

  34. Yamagami S, Tsuru T, Ohkawa T, Endo H, Isobe M . Suppression of allograft rejection with anti-αβ T cell receptor antibody in rat corneal transplantation. Transplantation 1999; 67: 600–604.

    Article  CAS  Google Scholar 

  35. Wesselborg S, Janssen O, Kabelitz D . Induction of activation-driven death (apoptosis) in activated but not resting peripheral blood T cells. J Immunol 1993; 150: 4338–37964345.

    CAS  PubMed  Google Scholar 

  36. Ferran C, Bach JF, Chatenoud L . In vivo T cell activation properties of anti-T cell monoclonal antibodies. Exp Nephrol 1993; 1: 83–89.

    CAS  PubMed  Google Scholar 

  37. Knight RJ, Kurrle R, McClain J, Racenberg J, Baghdahsarian V, Kerman R et al. Clinical evaluation of induction immunosuppression with a murine IgG2b monoclonal antibody (BMA031) directed toward the human α/β-T cell receptor. Transplantation 1994; 57: 1581–1588.

    Article  CAS  Google Scholar 

  38. Banuelos SJ, Shultz LD, Greiner DL, Burzenski LM, Gott B, Lyons BL et al. Rejection of human islets and human HLA-A2.1 transgenic mouse islets by alloreactive human lymphocytes in immunodeficient NOD-scid and NOD-Rag1(null)Prf1(null) mice. Clin Immunol 2004; 112: 273–283.

    Article  CAS  Google Scholar 

  39. Issa F, Hester J, Goto R, Nadig SN, Goodacre TE, Wood K . Ex vivo-expanded human regulatory T cells prevent the rejection of skin allografts in a humanized mouse model. Transplantation 2010; 90: 1321–1327.

    Article  CAS  Google Scholar 

  40. Koh KP, Wang Y, Yi T, Shiao SL, Lorber MI, Sessa WC et al. T cell-mediated vascular dysfunction of human allografts results from IFN-gamma dysregulation of NO synthase. J Clin Invest 2004; 114: 846–856.

    Article  CAS  Google Scholar 

  41. Herold KC, Hagopian W, Auger JA, Poumian-Ruiz E, Taylor L, Donaldson D et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 2002; 346: 1692–1698.

    Article  CAS  Google Scholar 

  42. Korngold R, Sprent J . Lethal graft-versus-host disease after bone marrow transplantation across minor histocompatibility barriers in mice. Prevention by removing mature T-cells from marrow. J Exp Med 1978; 148: 1687–1698.

    Article  CAS  Google Scholar 

  43. Wilson J, Cullup H, Lourie R, Sheng Y, Palkova A, Radford KJ et al. Antibody to the dendritic cell surface activation antigen CD83 prevents acute graft-versus-host disease. J Exp Med 2009; 206: 387–398.

    Article  CAS  Google Scholar 

  44. Hall BM . Cells mediating allograft rejection. Transplantation 1991; 51: 1141.

    Article  CAS  Google Scholar 

  45. Hara M, Kingsley C, Niimi M, Read S, Turvey SE, Bushell AR et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol 2001; 166: 3789–3796.

    Article  CAS  Google Scholar 

  46. Wood KJ, Goto R . Mechanisms of rejection: current perspectives. Transplantation 2012; 93: 1–10.

    Article  Google Scholar 

  47. Hayday AC . γδ cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 2000; 18: 975–1026.

    Article  CAS  Google Scholar 

  48. Jagadeesh D, Woda BA, Draper J, Evens AM . Post transplant lymphoproliferative disorders: risk, classification, and therapeutic recommendations. Curr Treat Options Oncol 2012; 13: 122–136.

    Article  Google Scholar 

  49. Peng S, Robert ME, Hayday AC, Craft J . A tumor-suppressor function for fas (CD95) revealed in T cell deficient mice. J Exp Med 1996; 184: 1149–1154.

    Article  CAS  Google Scholar 

  50. Penninger J, Wen T, Timms E, Potter J, Mallace VA, Matsuyama T et al. Spontaneous resistance to acute T-cell leukemias in TCRVγ1.1Jγ4Cγ4 transgenic mice. Nature 1995; 375: 241–244.

    Article  CAS  Google Scholar 

  51. Ebert LM, Meuter S, Moser B . Homing and function of human skin gammadelta T cells and NK cells: relevance for tumor surveillance. J Immunol 2006; 176: 4331–4336.

    Article  CAS  Google Scholar 

  52. Kobayashi H, Tanaka Y, Yagi J, Toma H, Uchiyama T . Gamma/delta T cells provide innate immunity against renal cell carcinoma. Cancer Immunol Immunother 2001; 50: 115–124.

    Article  CAS  Google Scholar 

  53. Nicol AJ, Tokuyama H, Mattarollo SR, Hagi T, Suzuki K, Yokokawa K et al. Clinical evaluation of autologous gamma delta T cell-based immunotherapy for metastatic solid tumours. Br J Cancer 2011; 105: 778–786.

    Article  CAS  Google Scholar 

  54. Ma C, Zhang Q, Ye J, Wang F, Zhang Y, Wevers E et al. Tumor-infiltrating γδ T lymphocytes predict clinical outcome in human breast cancer. J Immunol 2012; 189: 5029–5036.

    Article  CAS  Google Scholar 

  55. Kabelitz D, Wesch D, He W . Perspectives of gammadelta T cells in tumor immunology. Cancer Res 2007; 67: 5–8.

    Article  CAS  Google Scholar 

  56. Kabelitz D . Human γδ T lymphocytes for immunotherapeutic strategies against cancer. F1000 Med Rep 2010; 2: 45.

    Article  Google Scholar 

  57. Welsh RM, Lin M-Y, Lohman BL, Varga SM, Zaronainski CC, Selin LK . αβ and γδ T-cell networks and their roles in natural resistance to viral infections. Immunol Rev 1997; 159: 79–93.

    Article  CAS  Google Scholar 

  58. Sciammas R, Johnson RM, Sperling AI, Hendricks RL, Bluestone JA . T cell receptor-γδ cells protect mice from herpes simplex virus type 1-induced lethal encephalitis. J Exp Med 1994; 185: 1969–1975.

    Article  Google Scholar 

  59. Jones-Carson J, Vazques-Torres A, van der Heyde H, Warner T, Wagner R, Balish E . γδ T cell-induced nitric oxide production enhances resistance to mucosal candidiasis. Nat Med 1995; 1: 552–557.

    Article  CAS  Google Scholar 

  60. Martínez-Llordella M, Puig-Pey I, Orlando G, Ramoni M, Tisone G, Rimola A et al. Multiparameter immune profiling of operational tolerance in liver transplantation. Am J Transplant 2007; 7: 309–319.

    Article  Google Scholar 

  61. Xu Y, Knapp JA . Gamma delta T cells in anterior chamber-induced tolerance in CD8(+) CTL responses. Invest Ophthalmol Vis Sci 2002; 43: 3473–3479.

    PubMed  Google Scholar 

  62. Hänninen A, Harrison LC . Gamma delta T cells as mediators of mucosal tolerance: the autoimmune diabetes model. Immunol Rev 2000; 173: 109–119.

    Article  Google Scholar 

  63. Harrison LC, Dempsey-Collier M, Kramer DR, Takahashi K . Aerosol insulin induces regulatory CD8 gamma delta T cells that prevent murine insulin-dependent diabetes. J Exp Med 1996; 184: 2167–2174.

    Article  CAS  Google Scholar 

  64. Gorczynski RM, Chen Z, Hoang Y, Rossi-Bergman B . A subset of γδ T-cell receptor positive cells produce T-helper type-2 cytokines and regulate mouse skin graft rejection following portal venous pretransplant preimmunization. Immunology 1996; 87: 381–389.

    Article  CAS  Google Scholar 

  65. Waldmann H, Polliak A, Hale G, Or R, Cividalli G, Weiss L et al. Elimination of graft-versus-host disease by in vitro depletion of alloreactive lymphocytes with a monoclonal rat anti-human lymphocyte antibody (Campath-1). Lancet 1984; 1: 483–486.

    Article  Google Scholar 

  66. Blazar BR, Taylor PA, Vallera DA . In vivo or in vitro anti-CD3 epsilon chain monoclonal antibody therapy for the prevention of lethal murine graft-versus-host disease across the major histocompatibility barrier in mice. J Immunol 1994; 152: 3665–3675.

    CAS  PubMed  Google Scholar 

  67. Hirsch R, Archibald J, Gress RE . Differential T cell hyporesponsiveness induced by in vivo administration of intact or F(ab’)2 fragments of anti-CD3 monoclonal antibody. F(ab’)2 fragments induce a selective T helper dysfunction. J Immunol 1991; 147: 2088–2093.

    CAS  PubMed  Google Scholar 

  68. Schroder PM, Khattar M, Deng R, Xie A, Chen W, Stepkowski SM . Transient combination therapy targeting the immune synapse abrogates T cell responses and prolongs allograft survival in mice. PLOS ONE 2013; 8: e69397.

    Article  CAS  Google Scholar 

  69. Sinclair C, Bains I, Yates AJ, Seddon B . Asymmetric thymocyte death underlies the CD4:CD8 T-cell ratio in the adaptive immune system. Proc Natl Acad Sci USA 2013; 110: e2905–e2914.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Friederike Müller for her technical assistance and Peter Weber for excellent support with assembly of artwork. Gregor Blank was supported by a grant of the f ortüne program (No. 2008-0-0). Christian Welker and Marco Sterk were supported by a grant of the Jürgen-Manchot-Foundation.

Author Contributions

Gregor Blank designed and performed research and wrote the manuscript; Christian Welker performed research, prepared figures and edited the manuscript; Jan Haarer, Marco Sterk, Viviana A Carcamo Yañez and Thomas O Joos performed experiments; Andreas Menrad, Daniel Snell and Gina LaCorcia provided the antibody and contributed to research design; Silvio Nadalin, Alfred Königsrainer and Rupert Handgretinger designed research and wrote the paper; and Karin Schilbach designed and supervised research and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Blank.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blank, G., Welker, C., Haarer, J. et al. Selective, efficient modulation of activated CD4+ αβT cells by the novel humanized antibody GZ-αβTCR targeting human αβTCR. Bone Marrow Transplant 50, 390–401 (2015). https://doi.org/10.1038/bmt.2014.263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2014.263

  • Springer Nature Limited

This article is cited by

Navigation