Skip to main content
Log in

Indomethacin-mediated reversal of multidrug resistance and drug efflux in human and murine cell lines overexpressing MRP, but not P-glycoprotein

  • Experimental Oncology
  • Published:
British Journal of Cancer Submit manuscript

Abstract

Decreased accumulation of the fluorescent dye BCECF [2', 7'-bis-(2-carboxyethyl)-5-(6)- carboxyfluorescein] characterized murine and human multidrug-resistant cell lines overexpressing the multidrug resistance protein (MRP). Indomethacin (10 microM), a known cyclo-oxygenase and glutathione-S-transferase inhibitor as well as a modulator of anion transport, increased accumulation and blocked efflux of BCECF in MRP-expressing murine and human cells. The drug did not affect P-glycoprotein (P-gp)-mediated export of rhodamine 123. The indomethacin effect on BCECF efflux was not reversed by the addition of exogenous prostaglandins, suggesting that the drug acts by a mechanism other than decreasing prostaglandin synthesis. Indomethacin also increased multidrug susceptibility of both murine and human cell lines overexpressing MRP, but not those displaying P-gp-associated resistance. In addition, indomethacin modulated the decreased vincristine accumulation in cells expressing MRP, but not in those expressing P-gp. These data suggest that indomethacin is a specific inhibitor of MRP, possibly functioning by inhibition of glutathione-S-transferase or, alternatively, by direct competition with the drug at the transport site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Draper, M., Martell, R. & Levy, S. Indomethacin-mediated reversal of multidrug resistance and drug efflux in human and murine cell lines overexpressing MRP, but not P-glycoprotein. Br J Cancer 75, 810–815 (1997). https://doi.org/10.1038/bjc.1997.145

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/bjc.1997.145

  • Springer Nature Limited

This article is cited by

Navigation