Skip to main content
Log in

Structure of human biliverdin IXβ reductase, an early fetal bilirubin IXβ producing enzyme

  • Letter
  • Published:

From Nature Structural Biology

View current issue Submit your manuscript

Abstract

Biliverdin IXβ reductase (BVR-B) catalyzes the pyridine nucleotide-dependent production of bilirubin-IXβ, the major heme catabolite during early fetal development. BVR-B displays a preference for biliverdin isomers without propionates straddling the C10 position, in contrast to biliverdin IXα reductase (BVR-A), the major form of BVR in adult human liver. In addition to its tetrapyrrole clearance role in the fetus, BVR-B has flavin and ferric reductase activities in the adult. We have solved the structure of human BVR-B in complex with NADP+ at 1.15 Å resolution. Human BVR-B is a monomer displaying an α/β dinucleotide binding fold. The structures of ternary complexes with mesobiliverdin IVα, biliverdin IXα, FMN and lumichrome show that human BVR-B has a single substrate binding site, to which substrates and inhibitors bind primarily through hydrophobic interactions, explaining its broad specificity. The reducible atom of both biliverdin and flavin substrates lies above the reactive C4 of the cofactor, an appropriate position for direct hydride transfer. BVR-B discriminates against the biliverdin IXα isomer through steric hindrance at the bilatriene side chain binding pockets. The structure also explains the enzyme's preference for NADP(H) and its B-face stereospecificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: BVR-B displays an α/β dinucleotide binding fold.
Figure 2: Human BVR-B binds specifically to NADP.
Figure 3: Structural formulas of some human BVR-B substrates and inhibitors.
Figure 4: Binding mode of substrates and inhibitors to human BVR-B.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Blumenthal, S.G. et al. Biochem. J. 186, 693–700 (1980).

    Article  CAS  PubMed Central  Google Scholar 

  2. Yamaguchi, T. & Nakajima, H. Eur. J. Biochem. 233, 467–472 (1995).

    Article  CAS  Google Scholar 

  3. Yamaguchi, T., Komoda, Y. & Nakajima, H. J. Biol. Chem. 269, 24343–24348 (1994).

    CAS  PubMed  Google Scholar 

  4. Shalloe, F., Elliott, G., Ennis, O. & Mantle, T.J. Biochem. J. 316, 385–387 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  5. Mack, C.P., Hultquist, D.E. & Shlafer, M. Biochem. Biophys. Res. Commun. 212, 35–40 (1995).

    Article  CAS  Google Scholar 

  6. Cunningham, O., Dunne, A., Sabido, P., Lightner, D. & Mantle, T.J. J. Biol. Chem. 275, 19009–19017 (2000).

    Article  CAS  Google Scholar 

  7. Cunningham, O., Gore, M.G. & Mantle, T.J. Biochem. J. 345, 393–399 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  8. Xu, F. et al. Biochem. Biophys. Res. Commun. 193, 434–439 (1993).

    Article  CAS  Google Scholar 

  9. Thoden, J.B., Frey, P.A. & Holden, H.M. Biochemistry 35, 5137–5144 (1996).

    Article  CAS  Google Scholar 

  10. Woods, C.M., Zhu, J., Coleman, T., Bloom, S.E. & Lazarides, E. J. Cell Sci. 108, 699–710 (1995).

    CAS  PubMed  Google Scholar 

  11. Zhu, J., Bloom, S.E., Lazarides, E. & Woods, C. J. Cell Sci. 108, 685–698 (1995).

    CAS  PubMed  Google Scholar 

  12. Levy, H.R., Vought, V.E., Yin, X. & Adams, M.J. Arch. Biochem. Biophys. 326, 145–151 (1996).

    Article  CAS  Google Scholar 

  13. Didierjean, C. et al. J. Mol. Biol. 268, 739–759 (1997).

    Article  CAS  Google Scholar 

  14. Adams, M.J., Ellis, G.H., Gover, S., Naylor, C.E. & Phillips, C. Structure 2, 651–668 (1994).

    Article  CAS  Google Scholar 

  15. Deacon, A.M., Ni, Y.S., Coleman, W.G. Jr. & Ealick, S.E. Structure 8, 453–462 (2000).

    Article  CAS  Google Scholar 

  16. Yaoi, T., Miyazaki, K. & Oshima, T. FEBS Lett. 355, 171–172 (1994).

    Article  CAS  Google Scholar 

  17. Chen, R., Greer, A. & Dean, A.M. Proc. Natl. Acad. Sci. USA 92, 11666–11670 (1995).

    Article  CAS  Google Scholar 

  18. Frydman, R.B., Bari, S., Tomaro, M.L. & Frydman, B. Biochem. Biophys. Res. Commun. 171, 465–473 (1990).

    Article  CAS  Google Scholar 

  19. Sun, D. et al. Acta Crystallogr. D 56, 1180–1182 (2000).

    Article  CAS  Google Scholar 

  20. Cunningham, O. PhD thesis, University of Dublin (1998).

    Google Scholar 

  21. Leslie, A. In Crystallographic computing V (eds., Moras, D., Podjarny, A.D. & Thierry, J.C.) 27–38 (Oxford University Press, Oxford, UK; 1991).

    Google Scholar 

  22. Collaborative Computational Project No. 4. Acta Crystallogr. D 50, 760–763 (1994).

  23. de La Fortelle, E. & Bricogne, G. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  24. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed Central  Google Scholar 

  25. Roussel, A. & Cambillau, C. TurboFRODO in Sillicon Graphics geometry (Sillicon Graphics, Mountain View, California; 1989).

    Google Scholar 

  26. Sheldrick, G.M. & Schneider, T.R. Methods Enzymol. 277, 319–343 (1997).

    Article  CAS  Google Scholar 

  27. Ennis, O., Maytum, R. & Mantle, T.J. Biochem. J. 328, 33–36 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  28. Yamaguchi, T., Komuro, A., Nakano, Y., Tomita, M. & Nakajima, H. Biochem. Biophys. Res. Commun. 197, 1518–1523 (1993).

    Article  CAS  Google Scholar 

  29. Quandt, K.S. & Hultquist, D.E. Proc. Natl. Acad. Sci. USA 91, 9322–9326 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ministerio de Educación y Cultura and the Generalitat de Catalunya to M.C. P.J.B.P. was supported in part by a FEBS Long Term fellowship. P.J.B.P. and S.M.R. acknowledge postdoctoral fellowships from Programa Praxis XXI (FCT, Portugal). O.C. was supported by the Health Research Board, Ireland. We thank D.A. Lightner for supplying the various verdins used in this work. Synchrotron data collection was supported by EU grants and the ESRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Coll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, P., Macedo-Ribeiro, S., Párraga, A. et al. Structure of human biliverdin IXβ reductase, an early fetal bilirubin IXβ producing enzyme. Nat Struct Mol Biol 8, 215–220 (2001). https://doi.org/10.1038/84948

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84948

  • Springer Nature America, Inc.

This article is cited by

Navigation