Skip to main content
Log in

Dynamic properties of neurons in cortical area MT in alert and anaesthetized macaque monkeys

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

In order to see the world with high spatial acuity, an animal must sample the visual image with many detectors that restrict their analyses to extremely small regions of space. The visual cortex must then integrate the information from these localized receptive fields to obtain a more global picture of the surrounding environment. We studied this process in single neurons within the middle temporal visual area (MT) of macaques using stimuli that produced conflicting local and global information about stimulus motion. Neuronal responses in alert animals initially reflected predominantly the ambiguous local motion features, but gradually converged to an unambiguous global representation. When the same animals were anaesthetized, the integration of local motion signals was markedly impaired even though neuronal responses remained vigorous and directional tuning characteristics were intact. Our results suggest that anaesthesia preferentially affects the visual processing responsible for integrating local signals into a global visual representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Experimental stimuli.
Figure 2: Results for plaid stimuli.
Figure 3: Change in the pattern index over time.

Similar content being viewed by others

References

  1. Wallach, H. Uber visuell wahrgenommene Bewegungsrichtung. Psychol. Forsch. 20, 325–380 (1935).

    Article  Google Scholar 

  2. Marr, D. & Ullman, S. Directional selectivity and its use in early visual processing. Proc. R. Soc. Lond. B 211, 151–180 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Movshon, J. A., Adelson, E. H., Gizzi, M. S. & Newsome, W. T. The analysis of moving visual patterns. Exp. Brain Res. Suppl. 11, 117–151 (1986).

    Article  Google Scholar 

  4. Stoner, G. R., Albright, T. D. & Ramachandran, V. S. Transparency and coherence in human motion perception. Nature 344, 153–155 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Adelson, E. H. & Movshon, J. A. Phenomenal coherence of moving visual patterns. Nature 300, 523–525 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Movshon, J. A. & Newsome, W. T. Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J. Neurosci. 16, 7733–7741 (1996).

    Article  CAS  Google Scholar 

  7. Snodderly, D. M. & Gur, M. Organization of striate cortex of alert, trained monkeys (Macaca fascicularis): ongoing activity, stimulus selectivity, and widths of receptive field activating regions. J. Neurophysiol. 74, 2100–2125 (1996).

    Article  Google Scholar 

  8. Mikami, A., Newsome, W. T. & Wurtz, R. H. Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1. J. Neurophysiol. 55, 1328–1339 (1986).

    Article  CAS  Google Scholar 

  9. Stoner, G. R. & Albright, T. D. Neural correlates of perceptual motion coherence. Nature 358, 412–414 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Pack, C. C. & Born, R. T. Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain. Nature 409, 1040–1042 (2001).

    Article  ADS  CAS  Google Scholar 

  11. Rodman, H. R. & Albright, T. D. Single-unit analysis of pattern-motion selective properties in the middle temporal visual area (MT). Exp. Brain Res. 75, 53–64 (1989).

    Article  CAS  Google Scholar 

  12. Castel-Branco, M., Goebel, R., Neuenschwander, S. & Singer, W. Neural synchrony correlates with surface segregation rules. Nature 405, 685–689 (2000).

    Article  ADS  Google Scholar 

  13. Alais, D., Wenderoth, P. & Burke, D. The size and number of plaid blobs mediate the misperception of type-II plaid direction. Vision Res. 37, 143–150 (1997).

    Article  CAS  Google Scholar 

  14. Simoncelli, E. P. & Heeger, D. J. A model of neuronal responses in visual area MT. Vision Res. 38, 743–761 (1998).

    Article  CAS  Google Scholar 

  15. Wilson, H. R., Ferrera, V. P. & Yo, C. A psychophysically motivated model for two-dimensional motion perception. Vis. Neurosci. 9, 79–97 (1992).

    Article  CAS  Google Scholar 

  16. Albright, T. D. Form-cue invariant motion processing in primate visual cortex. Science 255, 1141–1143 (1992).

    Article  ADS  CAS  Google Scholar 

  17. O'Keefe, L. P. & Movshon, J. A. Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey. Vis. Neurosci. 15, 305–317 (1998).

    Article  CAS  Google Scholar 

  18. Mukherjee, P. & Kaplan, E. Dynamics of neurons in the cat lateral geniculate nucleus: in vivo electrophysiology and computational modeling. J. Neurophysiol. 74, 1222–1243 (1995).

    Article  CAS  Google Scholar 

  19. Lamme, V. A. The neurophysiology of figure-ground segregation in primary visual cortex. J. Neurosci. 15, 1605–1615 (1995).

    Article  CAS  Google Scholar 

  20. Lamme, V. A., Zipser, K. & Spekreijse, H. Figure-ground activity in primary visual cortex is suppressed by anesthesia. Proc. Natl Acad. Sci. USA 95, 3263–3268 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Lamme, V. A. & Roelfsema, P. R. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 23, 571–579 (2000).

    Article  CAS  Google Scholar 

  22. Hildreth, E. C. The Measurement of Visual Motion (MIT Press, Cambridge, Massachusetts, 1984).

    MATH  Google Scholar 

  23. Lidèn, L. H. & Pack, C. C. The role of terminators and occlusion cues in motion integration and segmentation: A neural network model. Vision Res. 39, 3301–3320 (1999).

    Article  Google Scholar 

  24. Ferster, D., Chung, S. & Wheat, H. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380, 249–252 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Born, R. T., Groh, J. M., Zhao, R. & Lukasewycz, S. J. Segregation of object and background motion in visual area MT: effects of microstimulation on eye movements. Neuron 26, 725–734 (2000).

    Article  CAS  Google Scholar 

  26. Robinson, D. A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans. Biomed. Eng. 10, 137–145 (1963).

    CAS  PubMed  Google Scholar 

  27. Born, R. T. & Tootell, R. B. Spatial frequency tuning of single units in macaque supragranular striate cortex. Proc. Natl Acad. Sci. USA 88, 7066–7070. (1991).

Download references

Acknowledgements

We thank P. Hendrickson for technical assistance, and M. Livingstone for comments on an earlier version of the manuscript. This work was supported by the NIH, The Whitehall Foundation and The Giovanni Armenise-Harvard Foundation for Scientific Research. C.C.P. was supported by a McDonnell-Pew fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher C. Pack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pack, C., Berezovskii, V. & Born, R. Dynamic properties of neurons in cortical area MT in alert and anaesthetized macaque monkeys. Nature 414, 905–908 (2001). https://doi.org/10.1038/414905a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/414905a

  • Springer Nature Limited

This article is cited by

Navigation