Skip to main content

Advertisement

Log in

Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer amyloid precursor protein

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Proteolytic processing of amyloid precursor protein (APP) through an endosomal/lysosomal pathway generates carboxy-terminal polypeptides that contain an intact β-amyloid domain1–3. Cleavage by as-yet unidentified proteases releases the β -amyloid pep tide in soluble form4–6. In Alzheimer's disease, aggregated β-amyloid is deposited in extracellular neuritic plaques.Although most of the molecular mechanisms involvingβ-amyloid and APP in the aetiology of Alzheimer's disease are still unclear, changes in APP metabolism maybe important in the pathogenesis of the disease. Here we show that transgenic mice expressing the amyloidogenic carboxy-terminal 104 amino acids of APP develop, with ageing, extracellular β-amyloid immunoreactivity, increased gliosis and microglial reactivity, as well as cell loss hi the CA1 region of the hippocampus. Adult transgenic mice demonstrate spatial-learning deficits in the Morris water maze and in maintenance of long-term potentiation (LTP). Our results indicate that alterations in the processing of APP may have considerable physiological effects on synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Estus, S. et al. Potentially amyloidogenic carboxyl-terminal derivatives of the amyloid protein precursor. Science 255, 726–728 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Haass, C., Koo, E. H., Mellon, A., Hung, A. Y. & Selkoe, D. J. Targeting of cell-surface β-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357, 500–502 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Golde, T. E., Estus, S., Younkin, L. H., Selkoe, D. J. & Younkin, S. G. Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 255, 728–730 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Haass, C. et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Shoji, M. et al. Production of the Alzheimer β-protein by normal proteolytic processing. Science 258, 126–129 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Seubert, P. et al. Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids. Nature 359, 325–327 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Beaudet, L. et al. Intragenic regulatory elements contribute to transcriptional control of the neurofilament light gene. Gene 116, 205–214 (1992).

    Article  CAS  Google Scholar 

  8. LeBlanc, A. Increased production of 4 kDa amyloid β-peptide in serum deprived human primary neuron cultures: possible involvement of apoptosis. J. Neurosci. 15, 7837–7846 (1995).

    Article  CAS  Google Scholar 

  9. Meaney, M. J., Aitken, D. H., van Berkel, C., Bhatnagar, S. & Sapolsky, R. M. Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 239, 766–768 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Morris, R. G. M. Development of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Meth. 11, 47–60 (1984).

    Article  CAS  Google Scholar 

  11. Kolb, B., Sutherland, R. J. & Wishaw, I. Q. A comparison of the contributions of the frontal and parietal association cortex to spatial localization in rats. Behav. Neurosci. 97, 13–27 (1983).

    Article  CAS  Google Scholar 

  12. Skelton, R. W. & McNamara, R. K. Bilateral knife cuts to the perforant path disrupt spatial learning in the Morris water maze. Hippocampus 2, 73–80 (1992).

    Article  CAS  Google Scholar 

  13. Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Bear, M. F. & Malenka, R. C. Synaptic placticity: LTP and LTD. Curr. Opin. Neurobiol. 4, 389–399 (1994).

    Article  CAS  Google Scholar 

  15. Yankner, B. A. et al. Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease. Science 245, 417–420 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Yoshikawa, K., Aizawa, T. & Hagashi, Y. Degeneration in vitro of post-mitotic neurons overexpressing the Alzheimer amyloid protein precursor. Nature 359, 64–67 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Hyman, B. T. Down syndrome and Alzheimer disease. Prog. Clin. Biol. Res. 379, 123–142 (1992).

    CAS  PubMed  Google Scholar 

  18. Yankner, B. A., Duffy, L. K. & Kirschner, D. A. Neurotrophic and neurotoxic effects of amyloid β-protein: reversal by tachykinin neuropeptides. Science 250, 279–282 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Mattson, M. P. et al. β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 376–389 (1992).

    Article  CAS  Google Scholar 

  20. Loo, D. T. et al. Apoptosis is induced by β-amyloid in cultured central nervous system neurons. Proc. Natl Acad. Sti. USA 90, 7951–7955 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Behl, C., Davis, J. B., Lesley, R. & Schubert, D. Hydrogen peroxide mediates amyloid β-protein toxicity. Cell 77, 817–822 (1994).

    Article  CAS  Google Scholar 

  22. Etcheberrigaray, R., Ito, E., Kim, C. S. & Alkin, D. L. Soluble β-amyloid induction of Alzheimer's phenotype of human fibroblast K+ channels. Science 264, 276–279 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Arispe, N., Rojas, J. & Pollard, H. B. Alzheimer disease amyloid β protein forms calcium channels in bilaycr membranes: blockade by trometbamine and aluminum. Proc. Natl Acad. Sci. USA 90, 567–571 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Meda, L. et al. Activation of microglial cells by β-amyloid protein and interferon-γ. Nature 374, 647–650 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Yan, S. D. et al. RAGE and amyloid β-peptide. Nature 382, 685–691 (1996).

    Article  ADS  CAS  Google Scholar 

  26. El Khoury, J. et al. Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils. Nature 382, 716–719 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Hsiao, K. et al. Correlative memory deficits, Aβ elevation and amyloid plaques in transgenic mice. Science 274, 99–103 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Games, D. et al. Alzheimer-type neuropathology in transgenic mice expressing V717F β-amyloid precursor. Nature 373, 523–526 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Quon, D. et al. Formation of β-amyloid protein deposits in brains of transgenic mice. Nature 352, 239–241 (1991).

    Article  ADS  CAS  Google Scholar 

  30. Kang, J. et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nalbantoglu, J., Tirado-Santiago, G., Lahsaïni, A. et al. Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer amyloid precursor protein. Nature 387, 500–505 (1997). https://doi.org/10.1038/387500a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387500a0

  • Springer Nature Limited

This article is cited by

Navigation