Skip to main content
Log in

Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-α

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

An Erratum to this article was published on 17 April 1997

Abstract

Tumour-necrosis factor-α (TNF-α) is a cytokine that contributes to a variety of inflammatory disease states1. The protein exists as a membrane-bound precursor2,3 of relative molecular mass 26K which can be processed by a TNF-α-converting enzyme (TACE), to generate secreted 17K mature TNF-α. We have purified TACE and cloned its complementary DNA. TACE is a membrane-bound disintegrin metalloproteinase. Structural comparisons with other disintegrin-containing enzymes indicate that TACE is unique, with noteable sequence identity to MADM4, an enzyme implicated in myelin degradation, and to KUZ5, a Drosophila homologue of MADM important for neuronal development. The expression of recombinant TACE (rTACE) results in the production of functional enzyme that correctly processes precursor TNF-α to the mature form. The rTACE provides a readily available source of enzyme to help in the search for new anti-inflammatory agents that target the final processing stage of TNF-α production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vassalli, P. The pathophysiology of tumour necrosis factors. Annu. Rev. Immunol. 10, 411–452 (1992).

    Article  CAS  Google Scholar 

  2. Decker, T., Lohmann-Matthes, M. L. & Gifford, G. E. Cell-associated tumor necrosis factor (TNF) as a killing mechanism of activated cytotoxic macrophages. J. mmuno. 138, 957–962 (1987).

    CAS  Google Scholar 

  3. Kriegler, M., Perez, C., DeFay, K., Albert, I. & Lu, S. D. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 53, 45–53 (1996).

    Article  Google Scholar 

  4. Howard, L., Lu, X., Mitchell, S., Griffiths, S. & Glynn, P. Molecular cloning of MADM: a catalytically active mammalian disintegrin-metalloprotease expressed in various cell types. Biochem. J. 317, 45–50 (1996).

    Article  CAS  Google Scholar 

  5. Rooke, J., Pan, D., Xu, T. & Rubin, G. M. KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science 273, 1227–1231 (1996).

    Article  CAS  ADS  Google Scholar 

  6. Mohler, K. M. et al. Protection against a lethal dose of endotoxin by an inhibitor of tumor necrosis factor processing. Nature 370, 218–220 (1994).

    Article  CAS  ADS  Google Scholar 

  7. Gearing, A. et al. Processing of tumor necrosis factor-α precursor by metalloproteases. Nature 370, 558–561 (1994).

    Article  ADS  Google Scholar 

  8. Wolfsberg, T. G. & White, J. M. ADAMs in fertilization and development. Dev. Biol. 180, 389–401 (1996).

    Article  CAS  Google Scholar 

  9. Gomis-Reuth, F. X. et al. Refined 2.0 angstrom x-ray crystal structure of the snake venom zinc-endopeptidase adamalysin II. Primary and tertiary structure determination, refinement, molecular structure and comparison with astacin, collagenase and thermolysin. J. Mol. Biol. 239, 513–544 (1994).

    Article  Google Scholar 

  10. Van Wart, H. E. & Birkedal-Hansen, B. The cysteine switch: a principle of regulation of metalloprotease activity with potential applicability to the entire matrix metalloprotease gene family. Proc. Natl Acad. Sci. USA 87, 5578–5581 (1990).

    Article  CAS  ADS  Google Scholar 

  11. Grams, F., Huber, R., Kress, L. F., Moroder, L. & Bode, W. Activation of snake venom metalloproteases by a cysteine switch-like mechanism. FEBS Lett. 335, 76–80 (1993).

    Article  CAS  Google Scholar 

  12. Shannon, J. D., Baramova, E. N., Bjarnason, J. B. & Fox, J. W. Amino acid sequence of a Crotalus atrox venom metalloprotease which cleaves type IV collagen and gelatin. J. Biol. Chem. 264, 11575–11583 (1989).

    CAS  PubMed  Google Scholar 

  13. Zhou, Q., Dangelmaier, C. & Smith, J. B. The hemorrhagin catrocollastatin inhibits collagen-induced platelet aggregatin by binding to collagen via its disintegrin-like domain. Biochem. Biophys. Res. Commun. 219, 720–726 (1996).

    Article  CAS  Google Scholar 

  14. Gould, R. J. et al. Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc. Soc. Exp. Biol. Med. 195, 168–171 (1990).

    Article  CAS  Google Scholar 

  15. Weskamp, G., Kratzschmar, J., Reid, M. S. & Blobel, C. P. MDC0, a widely expressed cellular disintegrin containing cytoplasmic SH3 ligand domains. J. Cell Biol. 132, 717–726 (1996).

    Article  CAS  Google Scholar 

  16. Suffys, P., Beyaert, R., Van Roy, F. & Fiers, W. Involvement of a serine protease in tumor necrosis factor-mediated cytotoxicity. Eur. J. Biochem. 178, 257–265 (1988).

    Article  CAS  Google Scholar 

  17. Bennett, T. A., Lynam, E. B., Sklar, L. A. & Rogelj, S. Hydroxamate-based metalloprotease inhibitor blocks shedding of L-selectin adhesion molecule from leukocytes. Functional consequences for neutrophil aggregation. J. Immunol. 156, 3093–3097 (1996).

    CAS  PubMed  Google Scholar 

  18. Mullberg, J. et al. A metalloprotease inhibitor blocks shedding of the IL-6 receptor and te p60 TNF receptor. J. Immunol. 155, 5198–5205 (1995).

    CAS  PubMed  Google Scholar 

  19. Arribas, J. et al. Diverse cell surface protein ectodomains are shed by a system sensitive to metalloprotease inhibitors. J. Biol. Chem. 271, 11376–11382 (1996).

    Article  CAS  Google Scholar 

  20. Crowe, P. D. et al. A metalloprotease inhibitor blocks shedding of the 80-kD TNF receptor and TNF processing in T lymphocytes. J. Exp. Med. 181, 1205–1208 (1995).

    Article  CAS  Google Scholar 

  21. Moyer, M., Rose, D. & Burkhart, W. Elutin of proteins from polyacrylamide gels onto the HP sequencing column. in Techniques in Protein Chemistry (ed. Crabb, J.) 195–204 (Academic, San Diego, 1994).

    Google Scholar 

  22. Granados, R. R., Guoxun, L., Derksen, A. C. G. & McKenna, K. A. A new cell line from Trichoplusia ni (BTI-Tn-5BI-4) susceptible to Trichoplusia single enveloped nuclear polyhedrosis virus. J. Invert. Path. 64, 260–266 (1994).

    Article  Google Scholar 

  23. Ziegler-Heitbrook, et al. Establishment of a human cell line (Mono Mac 6) with characteristics of mature monocytes. Int. J. Cander 41, 456–461 (1988).

    Article  Google Scholar 

  24. Morris, S. A. et al. Inhibition of organ invasion by the matrix metalloprotease inhibitor batimastat (BB-94) in two human colon carcinoma metastasis models. Cancer Res. 55, 3629–3633 (1995).

    PubMed  Google Scholar 

  25. O'Byren, E. M. et al. Oral administration of a matrix metalloprotease inhibitor, CGS 27023A, protects the cartilage proteoglycan matrix in a partial meniscectomy model of osteoarthritis in rabbits. Inflam. Res. 44 (suppl. 2), S117–S118 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moss, M., Jin, SL., Milla, M. et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-α. Nature 385, 733–736 (1997). https://doi.org/10.1038/385733a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385733a0

  • Springer Nature Limited

This article is cited by

Navigation