Skip to main content
Log in

The nuclear hormone receptor Ftz-F1 is a cofactor for the Drosophila homeodomain protein Ftz

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Homeobox genes specify cell fate and positional identity in embryos throughout the animal kingdom1. Paradoxically, although each has a specific function in vivo, the in vitro DNA-binding specificities of homeodomain proteins are overlapping and relatively weak. A current model is that homeodomain proteins interact with cofactors that increase specificity in vivo2,3. Here we use a native binding site for the homeodomain protein Fushi tarazu (Ftz) to isolate Ftz-Fl, a protein of the nuclear hormone-receptor superfamily and a new Ftz cofactor. Ftz and Ftz-Fl are present in a complex in Drosophila embryos. Ftz-Fl facilitates the binding of Ftz to DNA, allowing interactions with weak-affinity sites at concentrations of Ftz that alone bind only high-affinity sites. Embryos lacking Ftz-Fl display ftz-like pair-rule cuticular defects. This phenotype is a result of abnormal ftz function because it is expressed but fails to activate downstream target genes. Cooperative interaction between homeodomain proteins and cofactors of different classes may serve as a general mechanism to increase HOX protein specificity and to broaden the range of target sites they regulate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McGinnis, W. & Krumlauf, R. Cell 68, 283–302 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Hayashi, S. & Scott, M. P. Cell 63, 883–894 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Mann, R. S. & Chan, S.-K. Trends Genet. 12, 258–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Wakimoto, B. T., Turner, F. R. & Kaufman, T. C. Dev. Biol. 102, 147–172 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Pick, L. Scheir, A., Affolter, M., Schmidt-Glenewinke, T. & Gehring, W. J. Genes Dev. 4, 1224–1239 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Laughon, A. Biochemistry 30, 11357–11367 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Struhl, G. Nature 318, 677–680 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Hiromi, Y. & Gehring, W. J. Cell 50, 963–974 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Schier, A. F. & Gehring, W. J. Nature 356, 804–807 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Yu, Y. & Pick, L. Mech. Dev. 50, 163–175 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Han, W., Yu, Y., Allan, N. & Pick, L. Mol. Cell. Biol. 13, 5549–5559 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ueda, H., Sonoda, S., Brown, J. L., Scott, M. P. & Wu, C. Genes Dev. 4, 624–635 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Lavorgna, G., Ueda, H., Clos, J. & Wu, C. Science 252, 848–851 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Ohno, C., Ueda, H. & Petkovich, M. Mol. Cell. Biol. 14, 3166–3175 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ayer, S. et al. Nucl. Acids Res. 21, 1619–1627 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maier, D., Preiss, A. & Powell, J. R. EMBO J. 9, 3957–3966 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Perrimon, N. A., Lanjuin, C., Arnold, E. & Noll, E. Genetics 144, 1681–1692 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Han, W., Yu, Y., Kohanski, R. A., & Pick, L. J. Biol. Chem. (submitted).

  19. Fitzpatrick, V. D. & Ingles, C. J. Nature 337, 666–668 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Hyduk, D. & Percival-Smith, A. Genetics 142, 481–492 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Copeland, W. R., Nasiadka, A., Dietrich, B. H. & Krause, H. M. Nature 379, 162–165 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Guichet, A. et al. Nature (this issue).

  23. Furukubo-Takunaga, K. et al. Genes Dev. 6, 1082–1096 (1992).

    Article  Google Scholar 

  24. Rauskolb, C., Peifer, M. & Wieschaus, E. Cell 74, 1101–1112 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Ikeda, Y. et al. Mol. Endocrinol. 7, 852–860 (1993).

    CAS  PubMed  Google Scholar 

  26. Krause, H. M., Klemenz, R. & Gehring, W. J. Genes Dev. 2, 1021–1036 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Treisman, J., Gonczy, P., Vashishtha, M., Harris, E. & Desplan, C. Cell 59, 553–562 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Chou, T.-B. & Perrimon, N. Genetics 144, 1673–1679 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hiromi, Y., Kuroiwa, A. & Gehring, W. J. Cell 43, 603–613 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Li, W., Su, K. et al. The nuclear hormone receptor Ftz-F1 is a cofactor for the Drosophila homeodomain protein Ftz. Nature 385, 552–555 (1997). https://doi.org/10.1038/385552a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385552a0

  • Springer Nature Limited

This article is cited by

Navigation