Skip to main content
Log in

Episodic adaptive evolution of primate lysozymes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ALTHOUGH the darwinian concept of adaptation was established nearly a century ago, it has been difficult to demonstrate rigorously that the amino-acid differences between homologous proteins from different species have adaptive significance. There are currently two major types of sequence tests for positive darwinian selection on proteins from different species: sequence convergence, and neutral rate violation (reviewed in ref. 1). Lysozymes from the stomachs of cows and langur monkeys, two mammalian species displaying fermentation in the foregut, are an example2,3 of amino-acid sequence convergence among homologous proteins4–6. Here we combine tests of neutral rate violation with reconstruction of ancestral sequences to document an episode of positive selection on the lineage leading to the common ancestor of the foregut-fermenting colobine monkeys. This analysis also detected a previously unsuspected adaptive episode on the lineage leading to the common ancestor of the modern hominoid lysozymes. Both adaptive episodes were followed by episodes of negative selection. Thus this approach can detect adaptive and purifying episodes, and localize them to specific lineages during protein evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kreitman, M. & Akashi, H. Annu. Rev. Ecol. Syst. 26, 403–422 (1995).

    Article  Google Scholar 

  2. Li, W.-H. & Graur, D. Fundamentals of Molecular Evolution (Sinauer, Sunderland, MA, 1991).

    Google Scholar 

  3. Gillespie, J. The Causes of Molecular Evolution (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  4. Stewart, C.-B., Schilling, J. W. & Wilson, A. C. Nature 330, 401–404 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Swanson, K. W., Irwin, D. M. & Wilson, A. C. J. Mol. Evol. 33, 418–425 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Stewart, C.-B. & Wilson, A. C. Cold Spring Harb. Symp. Quant. Biol. 52, 891–899 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Chivers, D. J. & Hladik, C. M. J. Morphol. 166, 337–386 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Dobson, D. E., Prager, E. M. & Wilson, A. C. J. Biol. Chem. 259, 11607–11616 (1984).

    CAS  PubMed  Google Scholar 

  9. Li, W.-H., Wu, C.-I. & Luo, C.-C. Mol. Biol. Evol. 2, 150–174 (1985).

    PubMed  Google Scholar 

  10. Li, W.-H. J. Mol. Evol. 36, 96–99 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Nei, M. Molecular Evolutionary Genetics (Columbia Univ. Press, New York, 1987).

    Google Scholar 

  12. Endo, T., Ikeo, K. & Gojobori, T. Mol. Biol. Evol. 13, 685–690 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Wolfe, K. H. & Sharp, P. M. J. Mol. Evol. 37, 441–456 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Lee, Y.-H. & Vacquier, V. D. Biol. Bull. 182, 97–104 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Swanson, W. J. & Vacquier, V. D. Proc. Natl Acad. Sci. USA 92, 4957–4961 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hughes, A. L. & Nei, M. Nature 335, 167–170 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Nei, M. & Jin, L. Mol. Biol. Evol. 6, 290–300 (1989).

    CAS  PubMed  Google Scholar 

  18. Delson, E. in Colobine Monkeys: their Ecology, Behaviour and Evolution (eds Davies, A. G. & Oates, J. F.) 11–43 (Cambridge Univ. Press, 1994).

    Google Scholar 

  19. Felsenstein, J. PHYLIP (Phytogeny Inference Package), Version 4.0 (Department of Genetics, University of Washington, Seattle, WA, 1996).

    Google Scholar 

  20. Swofford, D. PAUP* (Phylogenetic Analysis Using Parsimony and Other Methods) (Sinauer, Sunderland, MA, in the press).

  21. Yang, Z., Kumar, S. & Nei, M. Genetics 141, 1641–1650 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Maddison, W. P. & Maddison, D. R. MacClade: Analysis of Phytogeny and Character Evolution, Version 3.04 (Sinauer, Sunderland, MA, 1994).

    Google Scholar 

  23. Stewart, C.-B. Lysozyme Evolution in Old World Monkeys (University of California, Berkeley, 1986).

    Google Scholar 

  24. Jollès, J. et al. J. Mol. Evol. 28, 528–535 (1989).

    Article  ADS  PubMed  Google Scholar 

  25. Irwin, D. M. & Wilson, A. C. J. Biol. Chem. 265, 4944–4952 (1990).

    CAS  PubMed  Google Scholar 

  26. Yu, M. & Irwin, D. M. Mol. Phylogenet. Evol. 5, 298–308 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Chomczynski, P. & Sacchi, N. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Ausubel, F. M. et al. Current Protocols in Molecular Biology (Wiley, New York, 1989).

    Google Scholar 

  29. Nei, M. & Gojobori, T. Mol. Biol. Evol. 3, 418–426 (1986).

    CAS  PubMed  Google Scholar 

  30. Kumar, S., Tamura, K. & Nei, M. MEGA: Molecular Evolutionary Genetics Analysis (Pennsylvania State Univ., 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messier, W., Stewart, CB. Episodic adaptive evolution of primate lysozymes. Nature 385, 151–154 (1997). https://doi.org/10.1038/385151a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385151a0

  • Springer Nature Limited

This article is cited by

Navigation