Skip to main content

Advertisement

Log in

Conifer root discrimination against soil nitrate and the ecology of forest succession

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE high incidence of failure when late-successional conifer species are replanted on disturbed forest sites is a considerable problem1–3. Here we advance a hypothesis that might explain many of these reforestation problems on a physiological basis, within the framework of forest succession. It is known that the chemical speciation of inorganic nitrogen in forest soils changes from predominantly ammonium (NH+4) in late-successional (mature forest) soils to mostly nitrate (NO3) after disturbances such as clearcut harvesting2–6. The capacity of plant roots to take up and use these two sources of nitrogen is therefore very important for species establishment on successionally different sites. We have used kinetic and compartmental-analysis techniques with the radiotracer 13N to compare the efficiency of nitrogen acquisition from NH+4 and NO3 sources in seedlings of white spruce, an important late-successional conifer. We found that uptake of NH+4 was up to 20 times greater than that of NO3 from equimolar solution, cytoplasmic concentration of NH+4 was up to 10 times greater than that of NO3, and physiological processing of NO3 was much less than that of NH+4. This reduced capacity to use NO3 is thought to present a critical impediment to seedling establishment on disturbed sites, where species better adapted to NO-3 would have a significant competitive advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ministry of Forests, British Columbia, Canada. Annual report 1991–1992.

  2. Lavoie, N., Vézina, L.-P. & Margolis, H. Tree Physiol. 11, 171–183 (1992).

    Article  CAS  Google Scholar 

  3. Jobidon, R., Thibault, L.-P., Fortin, J. A. For. Ecol. Mgmt 29, 295–310 (1989).

    Article  Google Scholar 

  4. Likens, G. E., Borman, F. H. & Johnson, N. M. Science 163, 1205–1206 (1969).

    Article  ADS  CAS  Google Scholar 

  5. Vitousek, P. M., Matson, P. A. & Van Cleve, K. Plant Soil 115, 229–239 (1989).

    Article  Google Scholar 

  6. Vogt, M. & Edmonds, R. L. Northwest Sci. 56, 83–89 (1982).

    Google Scholar 

  7. Martin, M. P. D. & Snaydon, R. W. J. Appl. Ecol. 19, 263–272 (1982).

    Article  Google Scholar 

  8. Vessey, J. K., Henry, L. T., Chaillou, S. & Raper, C. D. Jr J. Plant. Nutr. 13, 95–116 (1990).

    Article  CAS  Google Scholar 

  9. Lee, R. B., Purves, J. V., Ratcliffe, R. G. & Saker, L. R. J. Exp. Bot. 43, 1385–1396 (1992).

    Article  CAS  Google Scholar 

  10. Fentem, P. A., Lea, P. L. & Stewart, G. R. Plant Physiol. 71, 502–506 (1983).

    Article  CAS  Google Scholar 

  11. Malhi, S. S., Nyborg, M., Jahn, H. G. & Penny, D. C. Plant Soil 105, 231–239 (1988).

    Article  CAS  Google Scholar 

  12. Pearson, J. & Stewart, G. R. New Phytol. 125, 283–305 (1993).

    Article  CAS  Google Scholar 

  13. Wang, M. Y., Siddiqi, M. Y., Ruth, T. J. & Glass, A. D. M. Plant Physiol. 103, 1249–1258 (1993).

    Article  CAS  Google Scholar 

  14. Scheromm, P. & Plassard, C. Plant Physiol. Biochem. 26, 261–269 (1988).

    CAS  Google Scholar 

  15. Marschner, H., Häussling, M. & George, E. Trees 5, 14–21 (1991).

    Article  Google Scholar 

  16. McFee, W. W. & Stone, E. L. Jr Soil. Sci. Soc. Am. Proc. 32, 879–884 (1968).

    Article  ADS  CAS  Google Scholar 

  17. van den Driessche, R. Plant Soil 34, 421–439 (1971).

    Article  CAS  Google Scholar 

  18. Smirnoff, N., Todd, P. & Stewart, G. R. Ann. Bot. 54, 363–374 (1984).

    Article  CAS  Google Scholar 

  19. Steward, G. R., Mann, A. F. & Fentem, P. A. Physiol. Plant. 74, 26–33 (1988).

    Article  Google Scholar 

  20. Pearson, J., Clough, E. C. M. & Kershaw, J. L. Ann. Sci. For. 46 (suppl.), 663–665 (1989).

    Article  Google Scholar 

  21. Chapin, F. S., van Cleve, K. & Tyron, P. R. Oecologia 69, 238–242 (1986).

    Article  ADS  Google Scholar 

  22. Kronzucker, H. J., Siddiqi, M. Y. & Glass, A. D. M. Plant Physiol. 109, 319–326 (1995).

    Article  CAS  Google Scholar 

  23. Kronzucker, H. J., Siddiqi, M. Y. & Glass, A. D. M. Plant Physiol. 110, 773–779 (1996).

    Article  CAS  Google Scholar 

  24. Kronzucker, H. J., Glass, A. D. M. & Siddiqi, M. Y. Planta 196, 683–690 (1995).

    Article  CAS  Google Scholar 

  25. Flaig, H. & Mohr, H. Physiol. Plant. 84, 568–576 (1992).

    Article  CAS  Google Scholar 

  26. Knoepp, J. D., Turner, D. F. & Tingey, D. T. For. Ecol. Mgmt 59, 179–191 (1993).

    Article  Google Scholar 

  27. Kronzucker, H. J., Siddiqi, M. Y. & Glass, A. D. M. Planta 196, 674–682 (1995).

    Article  CAS  Google Scholar 

  28. Kronzucker, H. J., Siddiqi, M. Y. & Glass, A. D. M. Plant Physiol. 109, 481–490 (1995).

    Article  CAS  Google Scholar 

  29. Alexander, I. J. in Nitrogen as an Ecological Factor (eds Lee, J. A., McNeil, S. & Rorison, I. H.) 69–93 (Blackwell, Oxford, 1983).

    Google Scholar 

  30. Plassard, C., Barry, D., Eltrop, L. & Mousin, D. Can. J. Bot. 72, 189–197 (1994).

    Article  Google Scholar 

  31. Stark, J. M. & Hart, S. C. Nature 385, 61–64 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kronzucker, H., Siddiqi, M. & Glass, A. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385, 59–61 (1997). https://doi.org/10.1038/385059a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385059a0

  • Springer Nature Limited

This article is cited by

Navigation