Skip to main content
Log in

Quantum cryptography on multiuser optical fibre networks

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

To establish a secure communication channel, it is necessary to distribute between two users a key which allows safe encryption and decryption of messages. But because decryption is a simple task for any key holder, it is crucial that the key remains secret during distribution. Secrecy cannot be guaranteed if distribution occurs on the basis of classical physical mechanisms, as it is impossible to know whether the key has been intercepted during transmission. Quantum cryptography1–3 provides a fundamental solution to this problem. When quantum-mechanical processes are used to establish the key, any eavesdropping during transmission leads to an unavoidable and detectable disturbance in the received key information. Quantum cryptography has been demonstrated using standard telecommunication fibres linking single pairs of users4–8, but practical implementations will require communication networks with many users9. Here I introduce a practical scheme for multi-user quantum cryptography, and demonstrate its operation on an optical fibre network. The scheme enables a single controller on the network to establish, and regularly update, a distinct secret key with each network user. These keys can then be used to securely encrypt conventional data transmissions that are broadcast on the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C. H., Brassard, G., Breidbart, S. & Wiesner, S. Advances in Cryptology: Proceedings of Crypto ′82 (eds Chaum, D., Rivest, R. L. & Sherman, A. T.) 267–275 (Plenum, New York, 1983).

    Book  Google Scholar 

  2. Bennett, C. H., Bessette, F., Brassard, G., Salvail, L. & Smolin, J. J. Cryptol. 5, 3–28 (1992).

    Article  Google Scholar 

  3. Ekert, A. K. Phys. Rev. Lett. 67, 661–663 (1992).

    Article  ADS  Google Scholar 

  4. Townsend, P. D. Electron. Lett. 30, 809–811 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  5. Marand, C. & Townsend, P. Opt. Lett. 20, 1695–1697 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Franson, J. D. & Jacobs, B. C. Electron. Lett. 31, 232–234 (1995).

    Article  Google Scholar 

  7. Hughes, R. J., Luther, G. G., Morgan, G. I. & Simmons, C. in Proc. 7th Rochester Conf. on Coherence and Quantum Optics (eds Eberly, J. H., Mandel, L. & Wolf, E.) 103–112 (Plenum, New York, 1996).

    Google Scholar 

  8. Muller, A., Zbinden, H. & Gisin, N. Nature 378, 449 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Townsend, P. D., Phoenix, S. J. D., Blow, K. J. & Barnett, S. M. Electron. Lett. 30, 1875–1876 (1994).

    Article  Google Scholar 

  10. Phoenix, S. J. D. & Townsend, P. D. Contemp. Phys. 36, 165–195 (1995).

    Article  ADS  Google Scholar 

  11. Ekert, A. K., Huttner, B., Palma, G. M. & Peres, A. Phys. Rev. A 50, 1047–1056 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Huttner, B. & Ekert, A. K. J. Mod. Opt. 41, 2455–2466 (1994).

    Article  ADS  Google Scholar 

  13. Lütkenhaus, N. Phys. Rev. A 54, 97–111 (1996).

    Article  ADS  Google Scholar 

  14. Bennett, C. H., Brassard, G. & Robert, J.-M. Soc. Ind. Appl. Math. J. Comp. 17, 210–229 (1988).

    Google Scholar 

  15. Bennett, C. H., Brassard, G., Crepeau, C. & Maurer, U. M. IEEE Trans. Inform. Theory 41, 1915–1923 (1995).

    Article  MathSciNet  Google Scholar 

  16. Bennett, C. H. Phys. Rev. Lett. 68, 3121–3124 (1992).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. Townsend, P. D., Marand, C., Phoenix, S. J. D., Blow, K. J. & Barnett, S. M. Phil. Trans. R. Soc. Lond. A 354, 805–817 (1996).

    Article  ADS  Google Scholar 

  18. Owens, P. C. M., Rarity, J. G., Tapster, P. R., Knight, D. & Townsend, P. D. Appl. Opt. 33, 6895–6901 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Townsend, P. Quantum cryptography on multiuser optical fibre networks. Nature 385, 47–49 (1997). https://doi.org/10.1038/385047a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385047a0

  • Springer Nature Limited

This article is cited by

Navigation