Skip to main content
Log in

An oxysterol signalling pathway mediated by the nuclear receptor LXRα

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CHOLESTEROL and its oxysterol congeners are important constitu-ents of cell membranes and function as intermediates in several crucial biosynthetic pathways. These compounds autoregulate their metabolic fate by end-product repression and activation of downstream catabolism1. Although end-product repression by oxysterols is relatively well understood2, the mechanism by which these compounds act as positive transcription signalling molecules is unknown. Here we identify a specific group of endogenous oxysterols that activate transcription through the nuclear receptor LXRα. Transactivation of LXRα by oxysterols occurs at concentrations at which these compounds exist in vivo. The most potent activators also serve as intermediary substrates in the rate-limiting steps of three important metabolic pathways: steroid hormone biosynthesis, bile acid synthesis, and conversion of lanosterol to cholesterol. Our results demonstrate the existence of a nuclear receptor signalling pathway for oxysterols and suggest that LXRα may be important as a sensor of cholesterol metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Russell, D. W. Cardiovasc. Drugs Ther. 6, 103–110 (1992).

    Article  CAS  Google Scholar 

  2. Wang, X., Sato, R., Brown, M. S., Hua, X. & Goldstein, J. L. Cell 77, 53–62 (1994).

    Article  CAS  Google Scholar 

  3. Willy, P. J. et al. Genes Dev. 9, 1033–1045 (1995).

    Article  CAS  Google Scholar 

  4. Heyman, R. A. et al. Cell 68, 397–406 (1992).

    Article  CAS  Google Scholar 

  5. Harmon, M. A., Boehm, M. F., Heyman, R. A. & Mangelsdorf, D. J. Proc. Natl Acad. Sci. USA 92, 6157–6160 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Byskov, A. G. et al. Nature 374, 559–562 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Kandutsch, A. A., Chen, H. W. & Heiniger, H.-J. Science 201, 498–501 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Dhar, A. K., Teng, J. I. & Smith, L. L. J. Neurochem. 21, 51–60 (1973).

    Article  CAS  Google Scholar 

  9. Javitt, N. B., Kob, E., Burstein, S., Cohen, B. & Kutscher, J. J. Biol. Chem. 256, 12644–12646 (1981).

    CAS  PubMed  Google Scholar 

  10. Dixon, R., Furutachi, T. & Lieberman, S. Biochem. Biophys. Res. Commun. 40, 161–165 (1970).

    Article  CAS  Google Scholar 

  11. Forman, B. M. et al. Cell 81, 687–693 (1995).

    Article  CAS  Google Scholar 

  12. Forman, B. M. et al. Cell 83, 803–812 (1995).

    Article  CAS  Google Scholar 

  13. Kliewer, S. A. et al. Cell 83, 813–819 (1995).

    Article  CAS  Google Scholar 

  14. Song, C., Kokontis, J. M., Hiipakka, R. A. & Liao, S. Proc. Natl Acad. Sci. USA 91, 10809–10813 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Ikekawa, N. in Sterols and Bile Acids (eds Danielsson, H. & Sjövall, J.) 199–230 (Elsevier/North Holland Biomedical, Amsterdam, 1985).

    Book  Google Scholar 

  16. Yao, T. -P., Segraves, W. A., Oro, A. E., McKeown, M. & Evans, R. M. Cell 71, 63–72 (1992).

    Article  CAS  Google Scholar 

  17. Mangelsdorf, D. J. et al. Cell 83, 835–839 (1995).

    Article  CAS  Google Scholar 

  18. Kliewer, S. A., Umesono, K., Noonan, D. J., Heyman, R. A. & Evans, R. M. Nature 358, 771–774 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Leng, X., Tsai, S. Y., O'Malley, B. W. & Tsai, M. J. J. Steroid Biochem. Mol. Biol. 46, 643–661 (1993).

    Article  CAS  Google Scholar 

  20. Hörlein, A. J. et al. Nature 377, 397–404 (1995).

    Article  ADS  Google Scholar 

  21. Chen, J. D. & Evans, R. M. Nature 377, 454–457 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Oñate, S. A., Tsai, S. Y., Tsai, M. J. & O'Malley, B. W. Science 270, 1354–1357 (1995).

    Article  ADS  Google Scholar 

  23. Dolle, R. E., Schmidt, S. J., Erhard, K. F. & Kruse, L. J. Am. Chem. Soc. 111, 278–284 (1989).

    Article  CAS  Google Scholar 

  24. Morisaki, M., Sato, S. & Ikekawa, N. Chem. Pharmacol. Bull. 25, 2576–2583 (1977).

    Article  CAS  Google Scholar 

  25. Mangelsdorf, D. J., Ong, E. S., Dyck, J. A. & Evans, R. M. Nature 345, 224–229 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Giguère, V., Ong, E. S., Segui, P. & Evans, R. M. Nature 330, 624–629 (1987).

    Article  ADS  Google Scholar 

  27. Weinberger, C. et al. Nature 324, 641–646 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Baker, A. R. et al. Proc. Natl Acad. Sci. USA 85, 3294–3298 (1988).

    Article  ADS  CAS  Google Scholar 

  29. Issemann, I. & Green, S. Nature 347, 645–650 (1990).

    Article  ADS  CAS  Google Scholar 

  30. Green, S. et al. Nature 320, 134–139 (1986).

    Article  ADS  CAS  Google Scholar 

  31. Hollenberg, S. M. et al. Nature 318, 635–641 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janowski, B., Willy, P., Devi, T. et al. An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 383, 728–731 (1996). https://doi.org/10.1038/383728a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383728a0

  • Springer Nature Limited

This article is cited by

Navigation