Skip to main content
Log in

Photoelectrochromic windows and displays

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

PHOTOCHROMIC materials1,2 change colour on absorption of light, whereas electrochromic materials3,4 change colour in response to an electrically induced change in oxidation state. Both classes of materials are being investigated for potential applications in displays, imaging devices and 'smart' windows5–8,15,16. Here we describe an alternative route to such applications, in which an electrochromic film and a photovoltaic film form the two electrodes of an electrochemical cell. The resulting structure exhibits photochromism, but unlike conventional photochromic films, the light-absorption process (in the photovoltaic film) is separate from the coloration process (in the electrochromic film): both may therefore be optimized individually. Moreover, as the coloration process in our cells requires an external electrical current between the two electrodes, the optical state of the cell—transparent, absorbing or, in the case of non-uniform illumination, patterned—can be stored when the circuit is open, or changed when the electrodes are connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dürr, H. & Bouas-Laurent, H. Photochromism: Molecules and Systems (Elsevier, Amsterdam, 1990).

    Google Scholar 

  2. Yao, J. N., Hashimoto, K. & Fujishima, A. Nature 355, 624–626 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Deb, S. K. Sol. Energy Mater. Sol. Cells 25, 327–338 (1992).

    Article  CAS  Google Scholar 

  4. Green, M., Smith, W. C. & Weiner, J. A. Thin Solid Films 38, 89–100 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Granqvist, C. G. Solid State Mater. Sci. 16, 291–308 (1990).

    CAS  Google Scholar 

  6. Benson, D. K. & Branz, H. M. Sol. Energy Mater. Sol. Cells 39, 203–211 (1995).

    Article  CAS  Google Scholar 

  7. Nagasu, M. & Koshida, N. Appl. Phys. Lett. 57, 1324–1325 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Deb, S. K. Appl. Opt. Suppl. 3, 192–195 (1969).

    Article  Google Scholar 

  9. O'Regan, B. & Grätzel, M. Nature 353, 737–740 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Nazeeruddin, M. K. et al. J. Am. Chem. Soc. 115, 6382–6390 (1993).

    Article  CAS  Google Scholar 

  11. Parkinson, B. A. & Spitler, M. T. Electrochim. Acta 37, 943–948 (1992).

    Article  CAS  Google Scholar 

  12. Kay, A. & Grätzel, M. J. Phys. Chem. 97, 6272–6277 (1993).

    Article  CAS  Google Scholar 

  13. Faughnan, B. W., Crandall, R. S. & Heyman, P. M. RCA Rev. 36, 177–197 (1975).

    CAS  Google Scholar 

  14. Bechinger, C. et al. J. Appl. Phys. 80, 1226–1232 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Bonhôte, P. et al. Chem. Commun. 1163–1164 (1996).

  16. DeBerry, D. W. & Viehbeck, A. J. Electrochem. Soc. 130, 249–251 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bechinger, C., Ferrere, S., Zaban, A. et al. Photoelectrochromic windows and displays. Nature 383, 608–610 (1996). https://doi.org/10.1038/383608a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383608a0

  • Springer Nature Limited

This article is cited by

Navigation