Skip to main content
Log in

Calcium influx and transmitter release in a fast CNS synapse

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CALCIUM entry through presynaptic calcium channels controls the release of neurotransmitter1. It is not known whether the putative calcium sensor that triggers this rapid neurotransmitter release is close enough to be activated by the large increase in the Ca2+ concentration (calcium 'domain') reached within nanometres of a single calcium channel or whether many channels have to open2. We tested this in a calyx-type synapse in the rat medial nucleus of the trapezoid body. We compared the quantal content of post-synaptic currents with the presynaptic calcium current that flows during an action potential, and the results suggest that more than 60 calcium channels open for each vesicle that is released. In addition, we dialysed terminals with the slow calcium buffer EGTA, which reduced phasic transmitter release at concentrations as low as 1 mM. These results indicate that the distance that calcium ions must diffuse to reach the calcium sensor is relatively long, and that therefore Ca2+ entry through multiple calcium channels is needed to release a vesicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katz, B. The Release of Neural Transmitter Substances (Thomas, Springfield, IL, 1969).

    Google Scholar 

  2. Schweizer, F. E., Betz, H. & Augustine, G. J. Neuron 14, 689–696 (1995).

    Article  CAS  Google Scholar 

  3. Llinás, R., Sugimori, M. & Simon, S. M. Proc. Natl Acad. Sci. USA 79, 2415–2419 (1982).

    Article  ADS  Google Scholar 

  4. Forsythe, I. D. & Barnes-Davies, M. Proc. R. Soc. Lond. B 251, 151–157 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Borst, J. G. G., Helmchen, F. & Sakmann, B. J. Physiol. (Lond.) 489, 825–840 (1995).

    Article  CAS  Google Scholar 

  6. Dunlap, K., Luebke, J. I. & Turner, T. J. Trends Neurosci. 18, 89–98 (1995).

    Article  CAS  Google Scholar 

  7. Martin, A. R. & Pilar, G. J. Physiol. (Lond.) 175, 1–16 (1964).

    Article  CAS  Google Scholar 

  8. Isaacson, J. S. & Walmsley, B. Neuron 15, 875–884 (1995).

    Article  CAS  Google Scholar 

  9. Katz, B. & Miledi, R. Proc R. Soc. Lond. B 161, 483–495 (1965).

    Article  ADS  CAS  Google Scholar 

  10. Diamond, J. S. & Jahr, C. E. Neuron 15, 1097–1107 (1995).

    Article  CAS  Google Scholar 

  11. Cooper, R. L., Stewart, B. A., Wojtowicz, J. M., Wang, S. & Atwood, H. L. J. Neurosci. Methods 61, 67–78 (1995).

    Article  CAS  Google Scholar 

  12. Casey, M. A. & Feldman, M. L. Neuroscience 24, 189–194 (1988).

    Article  CAS  Google Scholar 

  13. Korn, H., Sur, C., Charpier, S., Legendre, P. & Faber, D. S. in Molecular and Cellular Mechanisms of Neurotransmitter Release (eds Stjärne, L., Greengard, P., Grillner, S., Hökfelt, T. & Ottoson, D.) 301–322 (Raven, New York, 1994).

    Book  Google Scholar 

  14. Llinás, R., Sugimori, M. & Silver, R. B. Science 256, 677–679 (1992).

    Article  ADS  Google Scholar 

  15. Stanley, E. F. Neuron 11, 1007–1011 (1993).

    Article  CAS  Google Scholar 

  16. Gollasch, M., Hescheler, J., Quayle, J. M., Patlak, J. B. & Nelson, M. T. Am. J. Physiol. 263, C948–C952 (1992).

    Article  CAS  Google Scholar 

  17. Smith, P. D., Liesegang, G. W., Berger, R. L., Czerlinski, G. & Podolsky, R. J. Anal. Biochem. 143, 188–195 (1984).

    Article  CAS  Google Scholar 

  18. Jackson, M. B., Konnerth, A. & Augustine, G. J. Proc. Natl Acad. Sci. USA 88, 380–384 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Hochner, B., Parnas, H. & Parnas, I. Neurosci. Lett. 125, 215–218 (1991).

    Article  CAS  Google Scholar 

  20. del Castillo, J. & Katz, B. J. Physiol. (Lond.) 124, 574–585 (1954).

    Article  CAS  Google Scholar 

  21. Adler, E. M., Augustine, G. J., Duffy, S. N. & Charlton, M. P. J. Neurosci. 11, 1496–1507 (1991).

    Article  CAS  Google Scholar 

  22. Neher, E. & Marty, A. Proc. Natl Acad. Sci. USA 79, 6712–6716 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Lim, N. F., Nowycky, M. C. & Bookman, R. J. Nature 344, 449–451 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Neher, E. Exp. Brain Res. 14, 80–96 (1986).

    ADS  CAS  Google Scholar 

  25. Haydon, P. G., Henderson, E. & Stanley, E. F. Neuron 13, 1275–1280 (1994).

    Article  CAS  Google Scholar 

  26. Wu, L. G. & Saggau, P. J. Neurophysiol. 73, 1965–1972 (1995).

    Article  CAS  Google Scholar 

  27. Mintz, I. M., Sabatini, B. L. & Regehr, W. G. Neuron 15, 675–688 (1995).

    Article  CAS  Google Scholar 

  28. Falke, J. J., Drake, S. K., Hazard, A. L. & Peersen, O. B. Q. Rev. Biophys. 27, 219–290 (1994).

    Article  CAS  Google Scholar 

  29. Herrington, J. & Bookman, R. J. Pulse Control V4.0: IGORXOPs for patch clamp data acquisition and capacitance measurements (University of Miami, 1994).

    Google Scholar 

  30. Jonas, P., Major, G. & Sakmann, B. J. Physiol. (Lond.) 472, 615–663 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borst, J., Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996). https://doi.org/10.1038/383431a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383431a0

  • Springer Nature Limited

This article is cited by

Navigation