Skip to main content
Log in

The role of heterotrophic bacteria in iron-limited ocean ecosystems

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IRON availability limits phytoplankton growth in large areas of the world's oceans1–3 and may influence the strength of the biological carbon pump4,5. Very little is known of the iron requirements of oceanic heterotrophic bacteria, which constitute up to 50% of the total particulate organic carbon in open ocean waters6,7 and are important in carbon cycling as remineralizers of dissolved organic matter and hence producers of CO2 (ref. 8). Here we report that oceanic bacteria contain more iron per biomass than phytoplankton. In the subarctic Pacific, they constitute a large fraction of biogenic iron and account for 20–45% of biological iron uptake. Bacterial iron quotas in the field are similar to those of iron-deficient laboratory cultures, which exhibit reduced elec-tron transport, slow growth, and low carbon growth efficiency. Heterotrophic bacteria therefore play a major role in the biogeo-chemical cycling of iron. In situ iron limitation of heterotrophic metabolism may have profound effects on carbon flux in the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin, J. H. et al. Nature 371, 123–129 (1994).

    Article  ADS  CAS  Google Scholar 

  2. de Baar, H. J. W. et al. Nature 373, 412–415 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Martin, J. H. & Fitzwater, S. E. Nature 331, 341–343 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Price, N. M., Ahner, B. A. & Morel, F. M. M. Limnol. Oceanogr. 39, 520–539 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Coale, K. H., Fitzwater, S. E., Gordon, R. M., Johnson, K. S. & Barber, R. T. Nature 379, 621–624 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Fuhrman, J. A., Sleeter, T. D., Carlson, C. A. & Proctor, L. M. Mar. Ecol. Progr. Ser. 57, 207–217 (1989).

    Article  ADS  Google Scholar 

  7. Kirchman, D. L., Keil, R. G., Simon, M. & Welschmeyer, N. A. Deep-Sea Res. 40, 967–988 (1993).

    Article  Google Scholar 

  8. Williams, P. J. le B. Kiel. Meeresforsch. 5, 1–28 (1981).

    Google Scholar 

  9. Price, N. M. et al. Biol. Oceanogr. 6, 443–461 (1988).

    Google Scholar 

  10. Maldonado, M. T. & Price N. M. Mar. Ecol. Prog. Ser. (in the press).

  11. Brand, L. E. Limnol. Oceanogr. 36, 1755–1771 (1991).

    Article  ADS  Google Scholar 

  12. Martin, J. H., Fitzwater, S. E. & Broenkow, W. W. Deep-Sea Res. 36, 649–680 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Martin, J. H. & Knauer, G. A. Geochim. Cosmochim. Acta 37, 1639–1653 (1973).

    Article  ADS  CAS  Google Scholar 

  14. Booth, B. C., Lewin, J. & Lorenzen, C. J. Mar. Biol. 98, 287–298 (1988).

    Article  Google Scholar 

  15. Miller, C. B. et al. Limnol. Oceanogr. 36, 1600–1615 (1991).

    Article  ADS  CAS  Google Scholar 

  16. LaRoche, J., Boyd, P. W., McKay, R. M. L. & Geider, R. J. Nature 382, 802–805 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Reid, R. T., Live, D. H., Faulkner, D. J. & Butler, A. Nature 366, 455–548 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Rue, E. L. & Bruland, K. W. Mar. Chem. 50, 117–138 (1995).

    Article  CAS  Google Scholar 

  19. Brand, L. E., Sunda, W. G. & Guillard, R. R. L. Limnol. Oceanogr. 28, 1182–1198 (1983).

  20. Sunda, W. G., Swift, D. G. & Huntsman, S. A. Nature 351, 55–57 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Ingram, J. L., Maaløe, O. & Neidhardt, F. C., Growth of the Bacterial Cell (Sinauer, Sunderland, MA, 1983).

    Google Scholar 

  22. Rainnie, D. J. & Bragg, P. D. J. Gen. Microbiol. 77, 339–349 (1973).

    Article  CAS  Google Scholar 

  23. Kirchman, D. L. Mar. Ecol. Prog. Ser. 62, 47–54 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Hudson, R. J. & Morel, F. M. M. Limnol. Oceanogr. 34, 1113–1120 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Lee, S. & Fuhrman, J. A. Appl. Envir. Microbiol. 53, 1298–1303 (1987).

    CAS  Google Scholar 

  26. Booth, B. C., Lewin, J. & Postel, J. R. Prog. Oceanogr. 32, 57–99 (1993).

    Article  ADS  Google Scholar 

  27. Neuer, S. Mar. Ecol. Prog. Ser. 83, 251–262 (1992).

    Article  ADS  Google Scholar 

  28. Welschmeyer, N., Goericke, R., Strom, S. & Peterson, W. Limnol. Oceanogr. 36, 1631–1649 (1991).

    Article  ADS  Google Scholar 

  29. Packard, T. T. & Williams, P. J. le B. Oceanol. Acta 4, 351–358 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tortell, P., Maldonado, M. & Price, N. The role of heterotrophic bacteria in iron-limited ocean ecosystems. Nature 383, 330–332 (1996). https://doi.org/10.1038/383330a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383330a0

  • Springer Nature Limited

This article is cited by

Navigation