Skip to main content
Log in

Calorimetric measurement of the latent heat of vortex-lattice melting in untwinned YBa2Cu3O7–δ

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE magnetic vortex lattice of copper oxide superconductors in the mixed (field-penetrated) state 'liquefies'1,2 on increasing the temperature T or the external magnetic field H, giving rise to an ohmic resistivity well below the fluctuation-dominated crossover to the normal state at the upper critical field Hc2(T). Theoretical work suggests that in clean materials this melting is a first-order phase transition3; features in the resistivity4–6 and magnetization7–10, as well as results from muon spin rotation11 and neutron-diffraction work12, have been cited to support this hypothesis. A calorimetric measurement of a latent heat provides the most definitive proof of the occurrence of a first-order transition, but such measurements require very high sensitivity. Here we report calorimetric measurements on an untwinned single crystal of YBa2Cu3O7–δ that have sufficient precision to clearly resolve the latent heat. The value obtained, ∼0.45kBT per vortex per superconducting layer (where kB is the Boltzmann constant), is consistent with that inferred from magnetization data using the Clapeyron equation. This result is compelling evidence for a first-order transition at a well defined phase boundary Hm(T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nelson, D. R. Phys. Rev. Lett. 60, 1973–1976 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Fisher, D. S., Fisher, M. P. A. & Huse, D. A. Phys. Rev. B. 43, 130–159 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Hetzel, R. E., Sudbø, A. & Huse, D. A. Phys. Rev. Lett. 69, 518–521 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Safar, H. et al. Phys. Rev. Lett. 69, 824–827 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Kwok, W. K. et al. Phys. Rev. Lett. 69, 3370–3373 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Kwok, W. K. et al. Phys. Rev. Lett. 72, 1092–1095 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Pastoriza, H., Goffman, M. F., Arribére, A. & de la Cruz, F. Phys. Rev. Lett. 72, 2951–2954 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Zeldov, E. et al. Nature 375, 373–376 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Liang, R., Bonn, D. A. & Hardy, W. N. Phys. Rev. Lett. 76, 835–838 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Welp, U., Fendrich, J. A., Kwok, W. K., Crabtree, G. W. & Veal, B. W. Phys. Rev. Lett. 76, 4809–4812 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Lee, S. L. et al. Phys. Rev. Lett. 71, 3862–3865 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Cubitt, R. et al. Nature 365, 407–411 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Jiang, W., Yeh, N. C., Reed, D. S., Kriplani, U. & Holtzberg, F. Phys. Rev. Lett. 74, 1438–1441 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Farrell, D. E. et al. Phys. Rev. B 53, 11807–11816 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Schilling, A. & Jeandupeux, O. Phys. Rev. B 52, 9714–9723 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Morozov, N., Zeldov, E., Majer, D. & Konczykowski, M. Phys. Rev. B 54, 3784 (1966).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schilling, A., Fisher, R., Phillips, N. et al. Calorimetric measurement of the latent heat of vortex-lattice melting in untwinned YBa2Cu3O7–δ. Nature 382, 791–793 (1996). https://doi.org/10.1038/382791a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382791a0

  • Springer Nature Limited

This article is cited by

Navigation