Skip to main content
Log in

Organization of 'nanocrystal molecules' using DNA

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

PATTERNING matter on the nanometre scale is an important objective of current materials chemistry and physics. It is driven by both the need to further miniaturize electronic components and the fact that at the nanometre scale, materials properties are strongly size-dependent and thus can be tuned sensitively1. In nanoscale crystals, quantum size effects and the large number of surface atoms influence the, chemical, electronic, magnetic and optical behaviour2—4. 'Top-down' (for example, lithographic) methods for nanoscale manipulation reach only to the upper end of the nanometre regime5; but whereas 'bottom-up' wet chemical techniques allow for the preparation of mono-disperse, defect-free crystallites just 1–10 nm in size6–10, ways to control the structure of nanocrystal assemblies are scarce. Here we describe a strategy for the synthesis of'nanocrystal molecules', in which discrete numbers of gold nanocrystals are organized into spatially defined structures based on Watson-Crick base-pairing interactions. We attach single-stranded DNA oligonucleotides of defined length and sequence to individual nanocrystals, and these assemble into dimers and trimers on addition of a complementary single-stranded DNA template. We anticipate that this approach should allow the construction of more complex two-and three-dimensional assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alivisatos, A. P. Science 271, 933–937 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Bawendi, M. G., Steigerwald, M. L. & Brus, L. E. Annu. Rev. Phys. Chem 41, 477–496 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Weller, H. Angew. Chem. Int. Edn. Engl. 32, 41–53 (1993).

    Article  Google Scholar 

  4. Tolbert, S. H. & Alivisatos, A. P. Annu. Rev. Phys. Chem. 46, 595–625 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Waugh, F. R. et al. Phys. Rev. Lett. 75, 705–708 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Murray, C. B., Norris, D. J. & Bawendi, M. G. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  7. Littau, K. A., Szajowski, P. J., Muller, A. J., Kortan, A. R. & Brus, L. E. J. Phys. Chem. 97, 1224–1230 (1993).

    Article  CAS  Google Scholar 

  8. Guzelian, A. A. et al. J. Phys. Chem. 100, 7212–7219 (1996).

    Article  CAS  Google Scholar 

  9. Schmid, G. Chem. Rev. 92, 1709–1727 (1992).

    Article  CAS  Google Scholar 

  10. Haneda, K. Can. J. Phys. 65, 1233–1241 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Spanhel, L., Weller, H. & Henglein, A. J. Am. Chem. Soc. 109, 6632–6635 (1987).

    Article  CAS  Google Scholar 

  12. Gopidas, K. R., Bohorquez, M. & Kamat, P. V. J. Phys. Chem. 94, 6435–6440 (1990).

    Article  CAS  Google Scholar 

  13. Brust, M., Bethell, D., Schiffrin, D. J. & Kiely, C. J. Adv. Mater. 7, 795–797 (1995).

    Article  CAS  Google Scholar 

  14. Lawless, D., Kapoor, S. & Meisel, D. J. Phys. Chem. 99, 10329–10335 (1995).

    Article  CAS  Google Scholar 

  15. Pag. X. et al. Angew. Chem. (submitted).

  16. Peschel, S. & Schmid, G. Angew. Chem. Int. Edn. Engl. 34, 1442–1443 (1995).

    Article  CAS  Google Scholar 

  17. Whetten, R. L. et al. Adv. Mater. 8, 428–433 (1996).

    Article  CAS  Google Scholar 

  18. Andres, R. P. et al. Science 272, 1323–1325 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Klein, D. L., McEuen, P. L., Bowen-Katari, J. E., Roth, R., Alivisatos, A. P. Appl. Phys. Lett. 68, 2574–2576 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Covin, V. L., Goldstein, A. N., Alivisatos, A. P. J. Am. Chem. Soc. 114, 5221–5230 (1992).

    Article  Google Scholar 

  21. Fendler, J. H., Meldrum, F. C. Adv. Mater. 7, 607–632 (1995).

    Article  CAS  Google Scholar 

  22. Peng, X. et al. J. Phys. Chem. 96, 3412–3416 (1992).

    Article  CAS  Google Scholar 

  23. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Science 270, 1335–1338 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Vossmeyer, T. et al. Science 267, 1476–1479 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Herron, N., Calabrese, J. C., Farneth, W. E. & Wang, Y. Science 259, 1426–1428 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Bentzon, M. D., van Wonterghem, J., Morup, S., Tholen, A. & Koch, C. J. W. Phil. Mag. B 60, 169–178 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Seeman, N. C. Mater. Res. Soc. Symp. Proc. 292, 123–135 (1993).

    Article  CAS  Google Scholar 

  28. Niemeyer, C. M., Sano, T., Smith, C. L. & Cantor, C. R. Nucleic. Acids Res. 22, 5530–5539 (1994).

    Article  CAS  Google Scholar 

  29. Zuckermann, R. N., Corey, D. R. & Schultz, P. G. Nucleic. Acids Res. 15, 5305–5321 (1987).

    Article  CAS  Google Scholar 

  30. Maniatis, T., Frisch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab., Cold Spring Harbor, NY, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alivisatos, A., Johnsson, K., Peng, X. et al. Organization of 'nanocrystal molecules' using DNA. Nature 382, 609–611 (1996). https://doi.org/10.1038/382609a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382609a0

  • Springer Nature Limited

This article is cited by

Navigation